80 research outputs found
Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard
Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence
Uncovering the nutritional landscape of food
Recent progresses in data-driven analysis methods, including network-based
approaches, are revolutionizing many classical disciplines. These techniques
can also be applied to food and nutrition, which must be studied to design
healthy diets. Using nutritional information from over 1,000 raw foods, we
systematically evaluated the nutrient composition of each food in regards to
satisfying daily nutritional requirements. The nutrient balance of a food was
quantified herein as nutritional fitness, using the food's frequency of
occurrence in nutritionally adequate food combinations. Nutritional fitness
offers prioritization of recommendable foods within a global network of foods,
in which foods are connected based on the similarities of their nutrient
compositions. We identified a number of key nutrients, such as choline and
alpha-linolenic acid, whose levels in foods can critically affect the foods'
nutritional fitness. Analogously, pairs of nutrients can have the same effect.
In fact, two nutrients can impact the nutritional fitness synergistically,
although the individual nutrients alone may not. This result, involving the
tendency among nutrients to show correlations in their abundances across foods,
implies a hidden layer of complexity when exploring for foods whose balance of
nutrients within pairs holistically helps meet nutritional requirements.
Interestingly, foods with high nutritional fitness successfully maintain this
nutrient balance. This effect expands our scope to a diverse repertoire of
nutrient-nutrient correlations, integrated under a common network framework
that yields unexpected yet coherent associations between nutrients. Our
nutrient-profiling approach combined with a network-based analysis provides a
more unbiased, global view of the relationships between foods and nutrients,
and can be extended towards nutritional policies, food marketing, and
personalized nutrition.Comment: Supplementary material is available at the journal websit
High prevalence of vitamin D insufficiency and its association with obesity and metabolic syndrome among Malay adults in Kuala Lumpur, Malaysia
Background: Vitamin D status, as indicated by 25-hydroxyvitamin D is inversely associated with adiposity, glucose homeostasis, lipid profiles, and blood pressure along with its classic role in calcium homeostasis and bone metabolism. It is also shown to be inversely associated with metabolic syndrome and cardiovascular diseases in western populations. However, evidence from the Asian population is limited. Therefore, we aim to study the prevalence of vitamin D insufficiency (< 50 nmol/L) and the association of 25-hydroxyvitamin D with metabolic risk factors among an existing Malay cohort in Kuala Lumpur. Methods: This is an analytical cross sectional study. A total of 380 subjects were sampled and their vitamins D status (25-hydroxyvitamin D), fasting blood glucose, full lipid profile were assessed using venous blood. Systolic and diastolic blood pressure, weight, height and waist circumference were measured following standard protocols. Socio-demographic data such as sex, age, smoking status etc were also collected. Data was analysed using t-test, chi-square test, General Linear Model and multiple logistic regression. Results: Females made up 58 of the sample. The mean age of respondents was 48.5 (SD 5.2) years. Females had significantly lower mean Vitamin D levels (36.2; 95 CI: 34.5, 38.0 nmol/L) compared to males (56.2; 95 CI: 53.2, 59.2 nmol/L). Approximately 41 and 87 of males and females respectively had insufficient (< 50 nmol/L) levels of 25-hydroxyvitamin D (p < 0.001). The prevalence of Metabolic Syndrome for the whole sample was 38.4 (95 CI: 33.5, 43.3). In the multivariate model (adjusted for age, sex, abdominal obesity, HDL-cholesterol, diastolic blood pressure), insufficient Vitamin D status was significantly associated with 1-year age increments (OR: 0.93; 95 CI: 0.88, 0.98), being female (OR: 8.68; 95 CI: 5.08, 14.83) and abdominal obesity (OR: 2.57; 95 CI: 1.51, 4.39). Respondents with insufficient vitamin D were found to have higher odds of having Metabolic Syndrome (OR: 1.73; 95 CI: 1.02, 2.92) after adjusting for age and sex. Conclusions: Our results highlight the high prevalence of vitamin D insufficiency among Malay adults in Kuala Lumpur. Vitamin D insufficiency is independently associated with younger age, female sex and greater abdominal obesity. Vitamin D insufficiency is also associated with Metabolic Syndrome
Influenza Outbreak during Sydney World Youth Day 2008: The Utility of Laboratory Testing and Case Definitions on Mass Gathering Outbreak Containment
BACKGROUND:Influenza causes annual epidemics and often results in extensive outbreaks in closed communities. To minimize transmission, a range of interventions have been suggested. For these to be effective, an accurate and timely diagnosis of influenza is required. This is confirmed by a positive laboratory test result in an individual whose symptoms are consistent with a predefined clinical case definition. However, the utility of these clinical case definitions and laboratory testing in mass gathering outbreaks remains unknown. METHODS AND RESULTS:An influenza outbreak was identified during World Youth Day 2008 in Sydney. From the data collected on pilgrims presenting to a single clinic, a Markov model was developed and validated against the actual epidemic curve. Simulations were performed to examine the utility of different clinical case definitions and laboratory testing strategies for containment of influenza outbreaks. Clinical case definitions were found to have the greatest impact on averting further cases with no added benefit when combined with any laboratory test. Although nucleic acid testing (NAT) demonstrated higher utility than indirect immunofluorescence antigen or on-site point-of-care testing, this effect was lost when laboratory NAT turnaround times was included. The main benefit of laboratory confirmation was limited to identification of true influenza cases amenable to interventions such as antiviral therapy. CONCLUSIONS:Continuous re-evaluation of case definitions and laboratory testing strategies are essential for effective management of influenza outbreaks during mass gatherings
Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis Independent of Chronic Liver Injury
Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV (“preS2 mutant”) that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged—2-year-old—mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines—expressing either mutant or wildtype HBV—therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC
The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica
Role of deficits in pathogen recognition receptors in infection susceptibility
This work was supported by the
Northern Portugal Regional Operational Programme
(NORTE 2020), under the Portugal 2020 Partnership
Agreement, through the European Regional Development
Fund (FEDER) (NORTE-01-0145-FEDER-000013), and
the Fundação para a Ciência e Tecnologia (FCT)
(IF/00735/2014 to A.C. and SFRH/BPD/96176/2013 to
C.C.
Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms
Host genetic signatures of susceptibility to fungal disease
Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the
European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the
Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013
to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)
- …