60 research outputs found

    A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

    Get PDF
    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health

    Fully Metal-Coated Scanning Near-Field Optical Microscopy Probes with Spiral Corrugations for Superfocusing under Arbitrarily Oriented Linearly Polarised Excitation

    Get PDF
    We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical

    Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFβ, and Wnt/β-catenin Signaling in Adrenocortical Carcinoma Cells

    Get PDF
    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma

    Socio-cultural determinants of adiposity and physical activity in preschool children: A cross-sectional study

    Get PDF
    BACKGROUND: Both individual socio-cultural determinants such as selected parental characteristics (migrant background, low educational level and workload) as well as the regional environment are related to childhood overweight and physical activity (PA). The purpose of the study was to compare the impact of distinct socio-cultural determinants such as the regional environment and selected parental characteristics on adiposity, PA and motor skills in preschool children. METHODS: Forty preschools (N = 542 children) of two culturally different urban regions (German and French speaking part of Switzerland) participated in the study (Ballabeina Study). Outcome measures included adiposity (BMI and skinfold thickness), objectively measured sedentary activities and PA (accelerometers) and agility performance (obstacle course). Parental characteristics (migrant status, educational level and workload) were assessed by questionnaire. RESULTS: Children from the French speaking areas had higher adiposity, lower levels of total and of more intense PA, were more sedentary and less agile than children from the German speaking regions (percent differences for all outcome parameters except for BMI ≥10%; all p ≤ 0.04). Differences in skinfold thickness, sedentary activities and agility, but not in PA, were also found between children of Swiss and migrant parents, though they were ≤8% (p ≤ 0.02). While paternal workload had no effect, maternal workload and parental education resulted in differences in some PA measures and/or agility performance (percent differences in both: ≤9%, p ≤ 0.008), but not in adiposity or sedentary activities (p = NS). Regional differences in skinfold thickness, PA, sedentary activities and agility performance persisted after adjustment for parental socio-cultural characteristics, parental BMI and, where applicable, children's skinfolds (all p ≤ 0.01). CONCLUSIONS: The regional environment, especially the broader social environment, plays a prominent role in determining adiposity, PA and motor skills of young children and should be implicated in the prevention of obesity and promotion of PA in children

    Sleep quality, the neglected outcome variable in clinical studies focusing on locomotor system; a construct validation study

    Get PDF
    Background: In addition to general health and pain, sleep is highly relevant to judging the well-being of an individual. Of these three important outcome variables, however, sleep is neglected in most outcome studies. Sleep is a very important resource for recovery from daily stresses and strains, and any alteration of sleep will likely affect mental and physical health, especially during disease. Sleep assessment therefore should be standard in all population-based or clinical studies focusing on the locomotor system. Yet current sleep assessment tools are either too long or too specific for general use. Methods: Based on a literature review and subsequent patient-based rating of items, an expert panel designed a four-item questionnaire about sleep. Construct validation of the questionnaire in a random sample of the German-speaking Swiss population was performed in 2003. Reliability, correlation, and tests for internal consistency and validity were analyzed. Results: Overall, 16,634 (70%) out of 23,763 eligible individuals participated in the study. Test-retest reliability coefficients ranged from 0.72 to 0.87, and a Cronbach’s alpha of 0.83 indicates good internal consistency. Results show a moderate to good correlation between sleep disturbances and health perception, and between sleep disturbances and overall pain. Conclusions: The Sleep Standard Evaluation Questionnaire (SEQ-Sleep) is a reliable and short tool with confirmed construct validity for sleep assessment in population-based observational studies. It is easy to administer and therefore suitable for postal surveys of the general population. Criterion validity remains to be determined

    Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin

    Get PDF
    Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity

    Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells

    Get PDF
    How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference
    corecore