41 research outputs found

    Robust Automated Tumour Segmentation on Histological and Immunohistochemical Tissue Images

    Get PDF
    Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification

    Multitrait analysis of quantitative trait loci using Bayesian composite space approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multitrait analysis of quantitative trait loci can capture the maximum information of experiment. The maximum-likelihood approach and the least-square approach have been developed to jointly analyze multiple traits, but it is difficult for them to include multiple QTL simultaneously into one model.</p> <p>Results</p> <p>In this article, we have successfully extended Bayesian composite space approach, which is an efficient model selection method that can easily handle multiple QTL, to multitrait mapping of QTL. There are many statistical innovations of the proposed method compared with Bayesian single trait analysis. The first is that the parameters for all traits are updated jointly by vector or matrix; secondly, for QTL in the same interval that control different traits, the correlation between QTL genotypes is taken into account; thirdly, the information about the relationship of residual error between the traits is also made good use of. The superiority of the new method over separate analysis was demonstrated by both simulated and real data. The computing program was written in FORTRAN and it can be available for request.</p> <p>Conclusion</p> <p>The results suggest that the developed new method is more powerful than separate analysis.</p

    Assessing population genetic structure via the maximisation of genetic distance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics.</p> <p>Methods</p> <p>In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a <it>simulated annealing </it>algorithm) of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set.</p> <p>Results</p> <p>The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for <it>F</it><sub><it>ST </it></sub>≥ 0.03, but only STRUCTURE estimates the correct number of clusters for <it>F</it><sub><it>ST </it></sub>as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found.</p> <p>Conclusion</p> <p>This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy-Weinberg and linkage equilibrium, performs well under different simulated scenarios and with real data. Therefore, it could be a useful tool to determine genetically homogeneous groups, especially in those situations where the number of clusters is high, with complex population structure and where Hardy-Weinberg and/or linkage equilibrium are present.</p

    Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results

    Get PDF
    Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor. © 2014 Biton et al

    Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves

    Get PDF
    We consider the probability of a magnetic nanoparticle to flip its magnetisation near the blocking temperature, and use this to develop quasi-analytic expressions for the zero-field-cooled and field-cooled magnetisation, which go beyond the usual critical energy barrier approach to the superparamagnetic transition. The particles in the assembly are assumed to have random alignment of easy axes, and to not interact. We consider all particles to be of the same size and then extend the theory to treat polydisperse systems of particles. In particular, we find that the mode blocking temperature is at a lower temperature than the peak in the zero-field-cooled magnetisation versus temperature curve, in agreement with experiment and previous rate-equation simulations, but in contrast to the assumption many researchers use to analyse experimental data. We show that the quasi-analytic expressions agree with Monte Carlo simulation results but have the advantage of being very quick to use to fit data. We also give an example of fitting experimental data and extracting the anisotropy energy density K
    corecore