40 research outputs found

    Moral enhancement: do means matter morally?

    Get PDF
    One of the reasons why moral enhancement may be controversial, is because the advantages of moral enhancement may fall upon society rather than on those who are enhanced. If directed at individuals with certain counter-moral traits it may have direct societal benefits by lowering immoral behavior and increasing public safety, but it is not directly clear if this also benefits the individual in question. In this paper, we will discuss what we consider to be moral enhancement, how different means may be used to achieve it and whether the means we employ to reach moral enhancement matter morally. Are certain means to achieve moral enhancement wrong in themselves? Are certain means to achieve moral enhancement better than others, and if so, why? More specifically, we will investigate whether the difference between direct and indirect moral enhancement matters morally. Is it the case that indirect means are morally preferable to direct means of moral enhancement and can we indeed pinpoint relevant intrinsic, moral differences between both? We argue that the distinction between direct and indirect means is indeed morally relevant, but only insofar as it tracks an underlying distinction between active and passive interventions. Although passive interventions can be ethical provided specific safeguards are put in place, these interventions exhibit a greater potential to compromise autonomy and disrupt identity

    Reducing time to discovery : materials and molecular modeling, imaging, informatics, and integration

    Get PDF
    This work was supported by the KAIST-funded Global Singularity Research Program for 2019 and 2020. J.C.A. acknowledges support from the National Science Foundation under Grant TRIPODS + X:RES-1839234 and the Nano/Human Interfaces Presidential Initiative. S.V.K.’s effort was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division and was performed at the Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy, Office of Science User Facility.Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.Peer reviewe

    Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Get PDF
    Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Models of care in palliative medicine

    No full text
    © 2014 Springer-Verlag Berlin Heidelberg. All rights reserved. In resource-rich countries, chronic complex diseases have largely replaced acute causes of disability and death. There is now a need for every clinician to be able to take a palliative approach. This is defined as the ability to deal with key elements of clinical care for someone who has a progressive illness that is likely to lead to death and their caregivers. The key elements of a palliative approach are access; collaborative interdisciplinary team-based care; defining the goals of care; evaluating the net effect of any treatments or interventions addressing, where relevant, issues of withholding and withdrawing treatment; determining preferred place of care and, separately, the preferred place at the time of death; and managing care transitions. For patients, there is evidence of improved symptom control, better met needs, better satisfaction with care and better quality of dying and improved comfort in the last 2 weeks of life. Having relinquished their roles, caregivers for people at the end of life who have used specialist palliative care services had better long-term survival and were better able to adjust to their changed circumstances. Specialist palliative care services are also associated with better met caregiver needs, improved satisfaction with care and less caregiver anxiety. For health systems, benefits include reduced inpatient stays, fewer presentations to the emergency department and reduced overall costs. Patient-defined areas of importance include the ability to carry out one's affairs as the end-of-life approaches, resolving relationship issues and being involved in decision-making. Specialist supportive and palliative care has services which are charged with providing team-based clinical care to people with the most complex end-of-life care needs and their families, as well as and consultative support for colleagues providing care where the patient or family have less complex needs. Ensuring all people have access to best palliative care is dependent upon an on going committment to ensuring that: There is adequate education at an undergraduate, postgraduate and post-registration level; and high-quality research that continues to refine the evidence base for clinical care that is offered; and health services are structured to optimally deliver these services

    Reducing time to discovery:materials and molecular modeling, imaging, informatics, and integration

    No full text
    Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.</p

    Incorporation in Lipid Microparticles of the UVA Filter, Butyl Methoxydibenzoylmethane Combined with the UVB Filter, Octocrylene: Effect on Photostability

    No full text
    The aim of this study was to reduce the photoinstability of butyl methoxydibenzoylmethane (BMDBM), the most widely used UVA filter, by incorporating it in lipid microparticles (LMs) alone or together with the UVB filter octocrylene (OCR), acting also as photostabilizer. Microparticles loaded with BMDBM or with combined BMDBM and OCR were produced by the hot emulsion technique, using glyceryl behenate as lipid material and poloxamer 188 as surfactant. The LMs were characterized by release studies, scanning electron microscopy, and powder X-ray diffractometry. The BMDBM and OCR loading was 15.2% and 10.6%, respectively. In order to reproduce the conditions prevalent in commercial sunscreen products, the photoprotective efficacy of the LMs was evaluated after their introduction in a model cream (oil-in-water emulsion) containing a mixture of UVA and UVB filters. A small but statistically significant decrease in BMDBM photodegradation was obtained when the UVA filter was encapsulated alone into the LMs (the extent of degradation was 28.6% ±2.4 for non-encapsulated BMDBM and 26.0% ±2.5 for BMDBM-loaded microparticles). On the other hand, the co-loading of OCR in the LMs produced a more marked reduction in the light-induced decomposition of microencapsulated BMDBM (the UVA filter loss was 21.5% ±2.2). Therefore, incorporation in lipid microparticles of BMDBM together with the sunscreen OCR is more effective in enhancing the UVA filter photostability than LMs loaded with BMDBM alone
    corecore