344 research outputs found

    Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems

    Get PDF
    The role of glucosinolates in aboveground plant¿insect and plant¿pathogen interactions has been studied widely in both natural and managed ecosystems. Fewer studies have considered interactions between root glucosinolates and soil organisms. Similarly, data comparing local and systemic changes in glucosinolate levels after root- and shoot-induction are scarce. An analysis of 74 studies on constitutive root and shoot glucosinolates of 29 plant species showed that overall, roots have higher concentrations and a greater diversity of glucosinolates than shoots. Roots have significantly higher levels of the aromatic 2-phenylethyl glucosinolate, possibly related to the greater effectiveness and toxicity of its hydrolysis products in soil. In shoots, the most dominant indole glucosinolate is indol-3-ylglucosinolate, whereas roots are dominated by its methoxyderivatives. Indole glucosinolates were the most responsive after jasmonate or salicylate induction, but increases after jasmonate induction were most pronounced in the shoot. In general, root glucosinolate levels did not change as strongly as shoot levels. We postulate that roots may rely more on high constitutive levels of glucosinolates, due to the higher and constant pathogen pressure in soil communities. The differences in root and shoot glucosinolate patterns are further discussed in relation to the molecular regulation of glucosinolate biosynthesis, the within-tissue distribution of glucosinolates in the roots, and the use of glucosinolate-containing crops for biofumigation. Comparative studies of tissue-specific biosynthesis and regulation in relation to the biological interactions in aboveground and belowground environments are needed to advance investigations of the evolution and further utilization of glucosinolates in natural and managed ecosystems

    Induced plant defences in biological control of arthropod pests: a double‐edged sword

    Get PDF
    Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence, it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production. Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because they are activated upon herbivore damage, costs only incur when defence is needed. Moreover, they can be more specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence mechanisms and their effects on natural enemies, our understanding on the feasibility of combining biological control with induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential synergies and conflicts among them and finally, identify gaps and list opportunities for their combined use in crop protection. We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod pests, specifically traits that facilitate communities of natural enemies to build-up.<br/

    The community ecology perspective of omics data

    Get PDF
    The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (β-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and β-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract

    Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    Get PDF
    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential

    The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits

    Get PDF
    Over the past two decades a growing body of empirical research has shown that many ecological processes are mediated by a complex array of indirect interactions occurring between rhizosphere-inhabiting organisms and those found on aboveground plant parts. Aboveground–belowground studies have thus far focused on elucidating processes and underlying mechanisms that mediate the behavior and performance of invertebrates in opposite ecosystem compartments. Less is known about genetic variation in plant traits such as defense as that may be driven by above- and belowground trophic interactions. For instance, although our understanding of genetic variation in aboveground plant traits and its effects on community-level interactions is well developed, little is known about the importance of aboveground–belowground interactions in driving this variation. Plant traits may have evolved in response to selection pressures from above- and below-ground interactions from antagonists and mutualists. Here, we discuss gaps in our understanding of genetic variation in plant-related traits as they relate to aboveground and belowground multitrophic interactions. When metabolic resources are limiting, multiple attacks by antagonists in both domains may lead to trade-offs. In nature, these trade-offs may critically depend upon their effects on plant fitness. Natural enemies of herbivores may also influence selection for different traits via top–down control. At larger scales these interactions may generate evolutionary “hotspots” where the expression of various plant traits is the result of strong reciprocal selection via direct and indirect interactions. The role of abiotic factors in driving genetic variation in plant traits is also discussed

    Resistance to three thrips species in <i>Capsicum</i> spp. depends on site conditions and geographic regions

    Get PDF
    Capsicum species are commercially grown for pepper production. This crop suffers severely from thrips damage and the identification of natural sources of thrips resistance is essential for the development of resistant cultivars. It is unclear whether resistance to Frankliniella occidentalis as assessed in a specific environment holds under different conditions. Additionally, other thrips species may respond differently to the plant genotypes. Screening for robust and general resistance to thrips encompasses testing different Capsicum accessions under various conditions and with different thrips species. We screened 11 Capsicum accessions (C. annuum and C. chinense) for resistance to F. occidentalis at three different locations in the Netherlands. Next, the same 11 accessions were screened for resistance to Thrips palmi and Scirtothrips dorsalis at two locations in Asia. This resulted in a unique analysis of thrips resistance in Capsicum at five different locations around the world. Finally, all accessions were also screened for resistance to F. occidentalis in the Netherlands using a leaf disc choice assay, allowing direct comparison of whole plant and leaf disc assays. Resistance to F. occidentalis was only partially consistent among the three sites in the Netherlands. The most susceptible accessions were consistently susceptible, but which accession was the most resistant differed among sites. In Asia, one C. chinense accession was particularly resistant to S. dorsalis and T. palmi, but this was not the most resistant accession to F. occidentalis. Overall, resistance to F. occidentalis correlated with S. dorsalis but not with T. palmi resistance in the C. annuum accessions. Damage inflicted on leaf discs reflected damage on the whole plant level. Our study showed that identifying broad spectrum resistance to thrips in Capsicum may prove to be challenging. Breeding programmes should focus on developing cultivars suitable for growing in defined geographic regions with specific thrips species and abiotic conditions

    Unravelling plant responses to stress—the importance of targeted and untargeted metabolomics

    Get PDF
    Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant–insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant–insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance
    corecore