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Induced plant defences in biological control of
arthropod pests: a double-edged sword
Maria L Pappas,a* Colette Broekgaarden,b George D Broufas,a

Merijn R Kant,c Gerben J Messelink,d Anke Steppuhn,e Felix Wäckersf,g

and Nicole M van Damh,i

Abstract

Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence,
it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production.
Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because
they are activated upon herbivore damage, costs are only incurred when defence is needed. Moreover, they can be more
specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere
with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence
mechanisms and their effects on natural enemies, our understanding of the feasibility of combining biological control with
induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most
important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential
synergies and conflicts among them and, finally, identify gaps and list opportunities for their combined use in crop protection.
We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod
pests, specifically traits that help communities of natural enemies to build up.
© 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Global food security relies heavily on the control of herbivorous
pests. Estimated pre-harvest losses caused by arthropod pests in
major crops worldwide are seldom less than 10% and frequently
much higher (see reference 1 for example). Since the 1960s, chem-
ical pesticides have been widely used to maximize crop yields in
agriculture. Nowadays, such pesticides are often combined with
biological control agents, i.e. the natural enemies of pests such
as predators and parasitoids, within so-called integrated pest
management (IPM) programmes. However, this combination may
be counter-productive as pesticides may interfere with predator
performance directly and indirectly by decreasing prey quality,
thereby repressing sufficient predator population build-up. Addi-
tionally, pesticides also interfere with other (beneficial) non-target
organisms that provide ecosystem services (e.g. bees that pro-
vide pollination services) and pose a health risk to humans.2,3

Moreover, pesticides usually impose high selection pressure for
the evolution of resistance mechanisms in the target organisms.
Because of the negative environmental and health effects, some
of the most hazardous pesticides (e.g. several organophosphates
and organochlorines) have been banned from the European and
US markets during the last 15 years to comply with the European
Commission Directive 91/414/EEC and registration requirements
of the Environmental Protection Agency, respectively.4,5

The resulting loss of important pesticides in the pest control
toolbox, combined with the increase in consumer demands, has

increased the interest in biological agents to control arthropod
pests. Another environmentally friendly alternative for replacing
pesticides is resistance breeding. The degree to which a plant can
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resist pests depends on the efficiency of its defences in limiting the
damage. Defences affect the herbivores either directly by killing or
repelling them or by slowing down their development and pop-
ulation growth or alternatively indirectly by attracting the natu-
ral enemies of herbivores.6 Some plant defences are constitutive,
i.e. present irrespective of herbivore presence, but the majority
of plant defences are to some extent herbivore-inducible, i.e. her-
bivore feeding or oviposition activities reinforce the constitutive
defences or activate novel defences.6,7 Inducible defences can be
cost-saving compared to constitutive defences and may prevent
auto-intoxication.8 In addition, inducible defences may be more
advantageous as they can be tailored to the actual attacker after
the plant has recognized herbivore-specific cues.9 Thus resistance
breeding for inducible defence traits may emerge as an important
alternative pest control method, especially if it is compatible with
biological control.

In this review, we explore the most promising opportunities for
enhancing biological control of arthropod pests on the basis of our
chemical-molecular and ecological knowledge on induced plant
defences. First, we provide a brief overview of the current funda-
mental knowledge on induced plant defences. Then, we outline
how some natural enemies are being used in biological control
practices within simple and more complex agricultural settings.
Subsequently, we bring these topics together and discuss the (pos-
sible) consequences of interactions between plant defences and
natural enemies for biological control of arthropod pests. Finally,
we list the practical opportunities for fine-tuning plant breeding
and natural enemy selection in order to ensure and improve sus-
tainable crop production. Other IPM tools such as genetic engi-
neering, behavioural and cultural techniques are not considered
here as they are the focus of other review papers.10 – 15

2 PLANT DEFENCES IN RELATION TO
BIOLOGICAL CONTROL
2.1 Direct and indirect plant defences
Plants employ various strategies to defend themselves against
above or below ground herbivores.16,17 Well-known examples of
plant defences are the glandular trichomes on tomato plants
that physically and chemically impede herbivory by mites
and whiteflies,18 protease inhibitors that constrain food diges-
tion− and thereby growth and development− of herbivorous
moth larvae,19 or the toxic secondary metabolites of parsnip that
obstruct webworm performance.20 Over 200 000 defensive sec-
ondary metabolites are known from the plant kingdom, and single
plant species may already produce hundreds if not thousands.21

Several of these compounds are volatile and can thus be detected
in the plant’s headspace. Upon herbivory the composition of
this headspace changes and this facilitates the attraction and/or
arresting of the herbivores’ natural enemies which are guided by
these volatiles to plants with prey, which is an example of indirect
defence.22 Indirect defences can also be conferred by plant traits
that accommodate natural enemies, such as domatia or extrafloral
nectar, which provide shelter and food, respectively.23,24

2.2 Cost and benefits of induced plant defences
The distinction between constitutive and induced defences can be
misleading, since many constitutive defences are also inducible.
For example, when acacias are being fed upon by giraffes the
length and density of thorns increases in the canopy at the grazing
height.25 The inducible component(s) of defence responses may

help minimize production costs in terms of plant productivity.
For example, genetically modified tomato plants with constitutive
expression of otherwise inducible defences produce considerably
fewer fruits than normal inducible plants.26

It is commonly assumed that induced defences will be favoured
over constitutive defences by natural selection since inducibil-
ity (1) limits damage through auto-toxicity and/or (2) lowers
the energy investment, particularly when the presence of her-
bivores is variable, and/or (3) allows for tailoring responses to
different pests.9 The costs of producing defences can be physio-
logical or ecological. Physiological costs are those associated with
the energy investment needed to produce and store defences,
whereas ecological costs are those associated with negative
changes in the interaction between plants and their environment
attributable to elevated defences, such as a reduction in competi-
tive strength with other plants,27,28 decreased resistance to other
pests29 or decreased attractiveness to beneficial organisms such
as pollinators.30 In all cases these costs reduce plant performance
or plant fitness, which may vary across environments.31 It must be
noted here that crop producers may not focus primarily on the
plant’s fitness but rather on aesthetic quality or plant productivity,
and these may be affected differently by induced defences.

It has long been debated whether plants incur a net benefit
from deploying indirect defences in nature.32,33 An important
argument against being beneficial was that parasitized herbivores
may feed more and may have an extra larval instar.34 Additionally,
herbivores or hyperparasitoids may also exploit indirect defences,
such as induced plant volatiles, to find their host.35 Thus the net
benefit of particular induced indirect defences may vary strongly
between environments with different herbivore communities.
Nevertheless, there is ample empirical evidence showing that
indirect defences can benefit plants. Extrafloral nectar production
consistently was found to increase plant fitness in ant-attended
wild plants.36,37 Experiments with Arabidopsis plants and maize
or the charloc mustard Sinapis arvensis attacked by parasitized
caterpillars revealed that seed production was not compromised
or was even increased. 38 – 40

2.3 Priming of induced plant defences
Plants can use environmental cues predictive of future stress,
such as herbivore-induced plant volatiles, to prime their inducible
defence responses.41 Priming is a state of sensitization which
results in a faster and stronger induced defence response upon
future herbivore attack compared to a non-primed individual.42,43

Priming reduces the time-lag of the induced defence response and
may result in a stronger response, often at a lower cost to the
plant.44 These properties could make priming a promising add-on
for fine-tuning the application of induced defences in horticulture
or agriculture without compromising crop production.

Priming of defences can occur after exposure to induced plant
volatiles from adjacent plants, through exposure to other (syn-
thetic) elicitors such as beta-amino butyric acid (BABA) or through
the addition of rhizobacteria.42,45 – 47 The secretion of extraflo-
ral nectar in lima beans, for example, can be primed by the
volatiles released from herbivore-attacked leaves both between
and within plants.41 Maize plants that were exposed to volatiles
of damaged maize seedlings emitted more parasitoid-attracting
sesquiterpenes in response to feeding by a lepidopteran herbivore
than unprimed plants.45 Volatiles may also allow for ‘eavesdrop-
ping’ between different plant species, resulting in direct upregula-
tion of defences. This is the case for wild tobacco plants which ele-
vate their defences and become more resistant to herbivory after

Pest Manag Sci 2017; 73: 1780–1788 © 2017 The Authors. wileyonlinelibrary.com/journal/ps
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exposure to volatiles emitted from damaged sagebrush.48 Not
only plant volatiles but also egg deposition can prime defences
that are subsequently triggered faster when the neonate larvae
start to feed.49 – 51 Finally, it has been shown that defence priming
can be realized using synthetic elicitors such as BABA.47 Although
BABA-mediated priming is especially efficient against pathogens,
there are indications that it can also reduce aphid growth without
having a direct negative effect on the aphid’s parasitoids.52 This
suggests that it may be possible to include plant defence primers
like BABA in IPM strategies.

3 THE BIOLOGICAL CONTROL TOOLBOX
3.1 Types of biological pest control
Generally three types of biological control are distinguished: classi-
cal, augmentative and conservation.53 Classical biological control
aims for long-term control of exotic pests by introducing popu-
lations of exotic natural enemies. Augmentative biological con-
trol uses mass-produced indigenous natural enemies either to
achieve curative control of a pest by mass release (inundation)
or to achieve prophylactic control of a potential pest (inoculative
introductions).54 Conservation biological control aims to conserve
and promote naturally occurring populations of natural enemies
using various techniques of habitat modification and resource sup-
plementation. Biological pest control is widely used in greenhouse
vegetable crops, soft fruits and ornamentals, but increasingly also
in open field crops and some arable crops.

Different techniques have been developed and implemented
so far to attract and retain biological control agents in horticul-
tural and agricultural farmlands. This has been accomplished for
instance by providing overwintering shelters, so called ‘beetle
banks’, in winter wheat55 and alternative or supplementary food
sources in the main crop or nearby vegetation. This approach is
applied in annual crops such as vegetables56 and perennial sys-
tems such as orchards and vineyards,57,58 but increasingly also in
greenhouse crops.59

3.2 Obstacles in biological pest control
Biological control has been applied successfully in many crops,
but not in all crops do natural enemies establish equally well.
Impediments for establishment include (1) a (temporary) lack of
prey for predators or hosts for parasitoids, (2) a lack of non-prey
food, such as nectar, honeydew or pollen, (3) a lack of suitable
oviposition sites and shelter and (4) the presence of plant traits
which adversely affect predators and parasitoids.60

Alternative or supplementary food such as nectar and pollen
allows natural enemies to survive periods without prey or hosts.
In addition, several natural enemies are fully dependent on nec-
tar and/or pollen during part of their life stages. For instance
adult parasitoids, hoverflies and gall midges need nectar to sur-
vive, to fuel flight activity and to stimulate oviposition.24 Several
species of predatory mites can establish populations on pollen
alone. Plant-provided oviposition sites include soft plant tissues,
used by anthocorid and mirid predatory bugs.61 Predatory mites
often survive and reproduce better on plants with so-called
acarodomatia, which are either small holes or tufts of hairs that
serve as refuges protecting eggs and/or mobile stages against
unfavourable environmental conditions and predation.62 Lack of
these supportive traits can seriously limit establishment of the
pests’ natural enemies.

Morphological plant traits that can have negative effects on
the foraging activity of parasitoids and predators include leaf

pubescence, glandular trichomes and waxy surfaces (but see also
below).60 Glandular trichomes have strong detrimental effects on
most natural enemies,63 although some species of predatory bugs
are adapted to sticky plants, which allow them to feed on the car-
rion of entrapped insects as a food source64 and provide their off-
spring protection against predation. Finally, some specialist insect
pests may selectively sequester resistance compounds from their
host plant and use them for their own defence against their natu-
ral enemies.65 A well-known example is the selective sequestration
of glucosinolates and the concomitant enzyme myrosinase in the
cabbage aphid Brevicoryne brassicae (L.), which ‘makes them walk-
ing mustard oil bombs’66 that are less palatable to predators and
parasitoids. Thus, breeding for resistance to generalist pests and
pathogens by increasing the levels of glucosinolates67 may incur
the risk of reducing the effectiveness of biocontrol agents.

3.3 Methods to accommodate natural enemies
The notion that catering to the resource requirements of para-
sitoids and predators can greatly improve population establish-
ment has sparked novel strategies targeted at both the naturally
occurring as well as mass released natural enemies.59 One of these
strategies are insectary and banker plants; these are specifically
selected plants that provide alternative food resources such as
nectar, pollen or alternative prey to predators and parasitoids.24,68

Insectary plants are typically used as pure stands of a single species
or as mixtures in strips within the main crop (orchards, vine-
yards) or at field margins,69,70 whereas banker plants are non-crop
plants grown within a greenhouse.71 Insectary plants may also
evoke negative effects by providing nutritional benefits to pests or
by attracting higher order predators and hyperparasitoids. Selec-
tion of the plant species based on experimental evidence may
help avoid these potential pitfalls.68,70 Plant species used in the
so-called ‘push−pull’ strategy to repel herbivores out of the crop
may also be used to attract the natural enemies of these herbi-
vores in the crop.72 Recent studies have shown that this targeted
approach can help enhance natural enemy levels, pest control and
even generate yield benefits (George D et al., unpublished).

Another novel strategy is the application of synthetic plant
volatiles that are attractive to natural enemies, similar to those
induced by herbivores. This approach has been used to attract
predatory mirids, anthocorids, coccinellids and lacewings in sev-
eral crops.73 – 75 Synthetic plant volatiles can be used to attract
natural enemies and repel herbivores at the same time,76 or
for ‘attract-and-reward’ approaches to attract natural enemies
to insectary plants where they are rewarded with alternative
food.77 The latter approach has been tested under field condi-
tions for sweet corn, broccoli, wine-grapes and Brassica crops using
buckwheat as the insectary plant and the common plant com-
pound methyl salicylate as volatile attractant.78,79 Although it is yet
unclear to what extent this approach enhances crop production,
volatiles may increase the parasitization rate of aphids but may
also increase the abundance of hyperparasitoids or herbivores.79,80

4 INDUCED PLANT DEFENCES AND
BIOLOGICAL PEST CONTROL
4.1 Synergies and conflicts
Plants usually employ multiple lines of defence concurrently,
rather than relying on individual defence mechanisms. This gen-
erates scope for possible interactions (both positive and nega-
tive) between different defence strategies.81 Positive interactions

wileyonlinelibrary.com/journal/ps © 2017 The Authors. Pest Manag Sci 2017; 73: 1780–1788
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Figure 1. Variation in direct and indirect effects of induced plant defence on natural enemies may determine the outcome of biological control. Natural
enemies can benefit from induced plant responses, e.g. from the release of volatile signals guiding predators or parasitoids to infested plants. Natural
enemies can also be affected by induced plant responses themselves. These direct effects could be (a) positive, e.g. for induced extrafloral nectar secretion,23

or (b) negative, e.g. for increased trichome densities hindering the movement or oviposition of the biological control agent.112 Indirectly, natural enemies
may be affected by an altered quality (c), quantity (d) and/or developmental time of the herbivorous prey.81,113 On the other hand, induced volatiles
may attract not only natural enemies (e) but also intraguild predators and hyperparasitoids (f ) and may inform herbivores on the damage status of
their host (g).35,114,115

between direct defensive traits and natural enemies occur when
plant chemistry or plant morphology slow down the development
of herbivores, thus extending the time window during which the
herbivores are vulnerable to attack.82 Plant direct defences may
also induce the mobility of the feeding herbivore.83,84 This can be
another mechanism that favours biological control as mobile her-
bivores are typically more exposed to visually hunting and ground
dwelling enemies.

In the case of indirect plant defences, which act on herbivores
through the attraction or accommodation of natural enemies,
plants and biological control should ideally work mutualistically.
Plants providing honest signals, food or shelter for predators and
parasitoids usually enhance the efficacy by which these intended
receivers protect the plants.85 Defence traits that strengthen each
other can be expected to be expressed jointly. A good example
of this is the positive correlation in the occurrence of extrafloral
nectar and domatia as shown among Viburnum spp.,86 underlining
the fact that these traits work in concert to support biological
control. However, when herbivores also exploit these traits to
find their host plants, and there are insufficient effective natural
enemies, the functioning of these indirect defences can break
down. Another conflict may arise when plants are dishonest. Some
plants mimic the presence of herbivores and, as a result, attract
natural enemies of pests under false pretences.87 An example is the
chemical mimicry of aphid sex or alarm pheromones by a range of
plant species, which results in the attraction of aphid predators,
frequently even duping them into depositing eggs.88 Under these
circumstances natural enemies may learn that responding to these
signals is not rewarding and may ignore them in favour of other,

honest signals. This may happen, for example, when plants are
selected or genetically modified to enhance constitutive emissions
of volatiles attracting natural enemies without rewards.

Direct defences against herbivores tend to have an impact on
the natural enemies of these herbivores as well (Fig. 1). Such
plant defence impacts on natural enemies can be direct, e.g.
when plant feeding predators are exposed to secondary metabo-
lites, or indirect, mediated through the herbivore. When the net
impact of defensive plant traits on biological control agents is
positive, plant defences and biological control can act additively
or even synergistically in reducing pest levels. However, if plant
defensive traits impair the functioning of natural enemies, this
can generate conflicts in terms of pest control.89 In this regard
the combination of defensive traits may generate unexpected
potential conflicts as well. For example, inducible plant defences
that negatively affect spider mite reproduction also constrain
egg consumption by predatory mites.90 In addition, plant sec-
ondary metabolites expressed as (inducible) direct defence also
leach into nectar. Toxic nectar may represent a pleiotropic con-
straint of having phloem-transported defensive chemicals91 but
also increase visitation frequencies by pollinators as was shown for
wild tobacco.92,93 While most examples of ‘toxic nectar’ involve flo-
ral nectar, this can also occur in extrafloral nectar.94 Knowing which
direct defences could backfire by negatively affecting natural ene-
mies is important information for plant breeders: sustainable crop
protection could gain momentum by routinely testing the com-
patibility of novel resistances with biological control agents on the
one hand or by removing undesired resistances that interfere with
biological control.

Pest Manag Sci 2017; 73: 1780–1788 © 2017 The Authors. wileyonlinelibrary.com/journal/ps
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Figure 2. Tomato food web of arthropod pests with different modes of plant feeding and their natural enemies, pathogens and endophytes that can
occur in a tomato crop. Plant responses induced by herbivores, omnivores, pathogens or endophytes can affect food web interactions in various ways.
For example, a pre-infestation by whiteflies reduced the response of specialist predatory mites to spider mites,116 which can disrupt biological control (A),
whereas pre-infestation by omnivorous predatory bugs decreased oviposition rates of spider mites,111 which may enhance biological control (B). Induced
plant responses may also alter the feeding behaviour of omnivorous predators. For example, induced plant responses to endophytes can reduce the plant
quality for omnivorous predators that may consequently increase prey feeding and thus facilitate biological pest control (C). Although only few of such
food web interactions have been studied, they should be considered when combining biological control and breeding for resistant plants.

4.2 Future directions
We argue that, despite the extensive knowledge base, not much
of existing basic research on natural plant resistance strategies
has been translated into applications that have been put into
agricultural practice. Notable exceptions are push−pull farming
in Africa76,95 and commercial pollen supplements to feed preda-
tory mites.96 This seems odd because these opportunities have
been widely acknowledged. An important reason, we feel, is that
plant protection using pesticides has long removed the incen-
tive for plant breeders and practitioners to search and apply
plant-resistance traits to enhance biocontrol programmes. In addi-
tion, natural enemy behaviour in the field is only poorly under-
stood as our current knowledge mainly relies on laboratory studies
with the application of manipulation of volatile emissions under
field conditions being scarce.97,98 However, the increasing demand
for reduced pesticide usage has re-ignited interest in this field. We
see several opportunities for integrating natural plant resistances
in crop breeding and IPM programmes.

4.2.1 Re-introducing natural resistance
Crops have often lost the full repertoire of resistance mech-
anisms that can be found among their wild relatives.99 Some
of these traits, like sticky trichomes, are simply impractical for

breeders while other traits may have been lost accidentally or, for
defences that are costly, as a consequence of maximizing yield.
Several programmes have been initiated to explore which of
these resistance factors can be transferred back into commercial
varieties to meet our demand of more environmentally friendly
crop protection.18,100,101 Re-introducing plant defences may affect
product flavour and/or crop yield and thus these effects should
also be considered in the process of developing new varieties,
especially when the loss of a resistance trait was intended.102 In
addition, genetic engineering of ‘green chemistry’, i.e. inducible
production of natural insecticides or semiochemicals,13 may
provide some extra control tools.

4.2.2 Removing redundant defences
Some defences interfere with biological control and do more
harm than good. Possibly such defences can be removed via
breeding but it is essential to first evaluate the impact on biological
control agents (e.g. see Fig. 2). Alternatively, one could try to
select for natural enemies that can cope with the plant defences
to which they are exposed directly or via their prey. In nature,
predators and parasitoids have to cope with these defences as
well and it is reasonable to assume that natural populations may
harbour variation in susceptibility, similar to pesticide-resistant

wileyonlinelibrary.com/journal/ps © 2017 The Authors. Pest Manag Sci 2017; 73: 1780–1788
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natural enemies.103 In principle, these traits could be introduced
into commercial biological control agents to make them more
compatible with the plant resistances currently present in our
crops.

4.2.3 Using defence elicitors
Pest monitoring programmes can be used not only for deciding
when to apply pesticides but also to optimize timing of defence
elicitor applications. Treating plants with such elicitors basically
mimics the ‘natural’ initiation of systemic resistance due to insect
feeding albeit much faster and possibly stronger. Several of such
products have been identified, such as jasmonate, benzothiadia-
zole (BTH) and BABA, but their usage may be restricted by leg-
islation. In principle, applying elicitors could also allow the use
of mutant crop plants that do not accumulate insect-induced
defence hormones upon insect feeding, thus fine-tuning the
trade-off between resistance and yield and/or flavour. However,
due to the multitude of plant traits affected by such elicitors,
including plant growth and reproduction parameters, uncoupling
defence elicitation from herbivory bears risks for crop yield and
product suitability.

4.2.4 Customizing and/or improving inducible plant defences
Many natural enemies can use prey-associated volatile signals for
finding hosts, offering opportunities for enhancing this process by
breeding or engineering of plants that produce clearer and pos-
sibly more localized volatile signals. As the genes regulating the
production of herbivore-induced plant volatiles are well known104

it is relatively easy to select for increased volatile emissions. These
emissions preferably should be inducible to avoid ‘false’ signals.87

Providing a volatile cue without a reward may backfire when
biological control agents learn to associate such cues with the
absence of prey or when plant pollinators like honeybees perceive
treated plants as ‘enemy-crowded’ spaces and thus avoid them.105

Such potential side-effects must be thoroughly tested under real-
istic field or greenhouse conditions before manipulated volatile
emissions can be applied in cropping systems as their function in
indirect defence has been mostly studied in the laboratory. Simi-
larly, identifying the plant’s susceptibility targets may offer ample
opportunities for modifying regulatory networks and customizing
induced direct defences without affecting the plant primary pro-
cess significantly.106

4.2.5 Facilitating natural enemies
Arthropod natural enemies require more than one resource: they
are looking not only for prey but also for other foods, shelter
and sometimes for conspecifics. Helping natural enemies in their
general needs may improve arrestment, persistence and perfor-
mance. For example, the use of plant volatiles to attract them
could be combined with offering alternative food. Some of this
food could be plant-produced, such as extrafloral nectar. Its pro-
duction is often inducible and even plants without nectaries can
produce inducible nectar for effective indirect defence under field
conditions.107,108 Natural enemy facilitation may also be achieved
by plant breeding for traits that accommodate natural enemies
such as low densities of trichomes, increased densities of domatia
and increasing plant-produced alternative food.

4.2.6 Evaluating multiple effects of induced plant defences
Increasing the diversity of biological control agents may be
required when facing multiple pests or when a single pest can be

more efficiently controlled with more than one biological control
agent. Under these circumstances, it is imperative to understand
what drives the interactions among species in these artificially
or naturally constructed food webs. Induced plant responses to
multiple biotic stresses (e.g. herbivores, plant pathogens) and
their biological control agents (e.g. zoophytophagous predators,
beneficial microbes) may be mediated by interacting plant sig-
nalling pathways. For example, plant susceptibility to a pathogen
may increase in the presence of a zoophytophagous predator
as a result of antagonism between salicylic acid and jasmonic
acid mediated plant responses to the pathogen and the predator,
respectively.109 – 111 To enhance biological control, it is therefore
important to identify and apply biological control agents that
not only can cope with the induction of defences by pests but
also can manipulate these in favour of plant productivity. In this
context, there may be opportunities for enhancing the synergistic
effects or attenuating the negative interactions between these
organisms. For example, infesting plants with beneficial microbes
to combat a foliar pathogen may variably affect induced plant
susceptibility to the phytophagy of zoophytophagous predators
or result in increased predation against a herbivorous prey. On
the other hand, applying defence elicitors to enhance plant resis-
tance against a single herbivore may provide empty niches for
secondary pests such as other herbivores or plant pathogens and
may also affect other plant traits in an unwanted way.

Although natural plant defences clearly can be put to work for
crop protection, simply stacking defences, green chemistry and
biological control in IPM may do more harm than good. Plant
defences may interfere directly by negatively affecting predator
performance and indirectly by affecting prey quality and even-
tually crop yield. This may not always clearly reveal itself since
natural enemies may still be effective albeit less efficiently than
they could be. Taking a community perspective, biological con-
trol is important to reveal opportunities for combining induced
plant defence with biological control using natural enemies.
Carefully exploring the net benefits of combining these different
approaches may prevent this multipurpose tool from turning into
a double-edged sword.
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