32 research outputs found

    Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited

    Full text link
    We show the David-Jerison construction of big pieces of Lipschitz graphs inside a corkscrew domain does not require its surface measure be upper Ahlfors regular. Thus we can study absolute continuity of harmonic measure and surface measure on NTA domains of locally finite perimeter using Lipschitz approximations. A partial analogue of the F. and M. Riesz Theorem for simply connected planar domains is obtained for NTA domains in space. As a consequence every Wolff snowflake has infinite surface measure.Comment: 22 pages, 6 figure

    Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents

    Full text link
    This paper concerns the dynamics of polynomial automorphisms of C2{\bf C}^2. One can associate to such an automorphism two currents μ±\mu^\pm and the equilibrium measure μ=μ+μ\mu=\mu^+\wedge\mu^-. In this paper we study some geometric and dynamical properties of these objects. First, we characterize μ\mu as the unique measure of maximal entropy. Then we show that the measure μ\mu has a local product structure and that the currents μ±\mu^\pm have a laminar structure. This allows us to deduce information about periodic points and heteroclinic intersections. For example, we prove that the support of μ\mu coincides with the closure of the set of saddle points. The methods used combine the pluripotential theory with the theory of non-uniformly hyperbolic dynamical systems

    Single-mode cavities at frequencies of 172 and 178 MHz

    No full text
    In the report presented here the projects of two accelerating cavities with strong damping of higher modes (HOM) with special vacuum loads are presented. The designs of the cavities and loads are described. The design parameters of cavities, their spectra of higher modes and calculation results of the beam phase motion stability are given for the VEPP-2000 and NANOHANA Projects

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR

    Full text link
    corecore