11 research outputs found

    Human enteroids: Preclinical models of non-inflammatory diarrhea

    Get PDF
    Researchers need an available and easy-to-use model of the human intestine to better understand human intestinal physiology and pathophysiology of diseases, and to offer an enhanced platform for developing drug therapy. Our work employs human enteroids derived from each of the major intestinal sections to advance understanding of several diarrheal diseases, including those caused by cholera, rotavirus and enterohemorrhagic Escherichia coli. An enteroid bank is being established to facilitate comparison of segmental, developmental, and regulatory differences in transport proteins that can influence therapy efficacy. Basic characterization of major ion transport protein expression, localization and function in the human enteroid model sets the stage to study the effects of enteric infection at the transport level, as well as to monitor potential responses to pharmacological intervention

    Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    No full text
    Background & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Methods Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Results Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na+/H+ exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na+/H+ exchanger 3 and Na+/K+/2Cl- cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3 --free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3 - secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na+/HCO3 - cotransporter 1. Conclusions Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na+/HCO3 - cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas

    Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology

    No full text
    Identification of Lgr5 as the intestinal stem cell marker as well as the growth factors necessary to replicate adult intestinal stem cell division has led to the establishment of the methods to generate “indefinite” ex vivo primary intestinal epithelial cultures, termed “mini-intestines.” Primary cultures developed from isolated intestinal crypts or stem cells (termed enteroids/colonoids) and from inducible pluripotent stem cells (termed intestinal organoids) are being applied to study human intestinal physiology and pathophysiology with great expectations for translational applications, including regenerative medicine. Here we discuss the physiologic properties of these cultures, their current use in understanding diarrhea-causing host-pathogen interactions, and potential future applications

    Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology

    No full text
    Identification of Lgr5 as the intestinal stem cell marker as well as the growth factors necessary to replicate adult intestinal stem cell division has led to the establishment of the methods to generate "indefinite" ex vivo primary intestinal epithelial cultures, termed "mini-intestines." Primary cultures developed from isolated intestinal crypts or stem cells (termed enteroids/colonoids) and from inducible pluripotent stem cells (termed intestinal organoids) are being applied to study human intestinal physiology and pathophysiology with great expectations for translational applications, including regenerative medicine. Here we discuss the physiologic properties of these cultures, their current use in understanding diarrhea-causing host-pathogen interactions, and potential future applications
    corecore