311 research outputs found

    Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function

    Get PDF
    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed

    PDBe-KB: collaboratively defining the biological context of structural data

    Get PDF
    The Protein Data Bank in Europe - Knowledge Base (PDBe-KB, https://pdbe-kb.org) is an open collaboration between world-leading specialist data resources contributing functional and biophysical annotations derived from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB is to place macromolecular structure data in their biological context by developing standardised data exchange formats and integrating functional annotations from the contributing partner resources into a knowledge graph that can provide valuable biological insights. Since we described PDBe-KB in 2019, there have been significant improvements in the variety of available annotation data sets and user functionality. Here, we provide an overview of the consortium, highlighting the addition of annotations such as predicted covalent binders, phosphorylation sites, effects of mutations on the protein structure and energetic local frustration. In addition, we describe a library of reusable web-based visualisation components and introduce new features such as a bulk download data service and a novel superposition service that generates clusters of superposed protein chains weekly for the whole PDB archive

    Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Get PDF
    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila

    Transposing tirtha: Understanding religious reforms and locative piety in early modern Hinduism

    Get PDF
    The paper deals with a historical and hitherto obscure case of de-commercialisation of sacred geography of India. Sahajanand Swami, an eighteenth century religious leader from Gujarat who became popular as Bhagwan Swaminarayan took an initiative to eliminate corruption in Dwarka, one of the most sacred destination in Hindu imagination. He also attempted to transpose the piety of Dwarka and recreate a parallel religious experience at Vadtal, an important site in Swaminarayan Hinduism. This process of making sacred sites more egalitarian is classified here as a 'religious reform'. The paper assesses this bivalent pursuit as an institutional reform within religion as well as a religious process in the context of piety, authority and orthodoxy. Through the example of Sahajanand Swami, it is argued to calibrate the colonial paradigm of reform that was largely contextual to social issues and western thought and failed to appreciate the religious reforms of that era. By constructing a nuanced typology of 'religious reform' distinct from 'social reforms', the paper eventually calls for a reassessment of religious figures who have significantly contributed in reforming the Hindu tradition in the medieval and modern era

    Phenolic, polysaccharidic and lipidic fractions of mushrooms from northeast Portugal: chemical compounds with antioxidant properties

    Get PDF
    Mushrooms do not constitute a significant portion of the human diet, but their consumption continues to increase due to their functional benefits and presence of bioactive compounds. Some of those compounds can be found in the phenolic, polysaccharidic and lipidic fractions of edible and inedible species. Herein, those fractions of five wild mushrooms (Coprinopsis atramentaria, Lactarius bertillonii, Lactarius vellereus, Rhodotus palmatus and Xerocomus chrysenteron) from Northeast Portugal were studied for their chemical composition and antioxidant properties. Protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were found in the phenolic fraction, ramnose, xylose, fucose, arabinose, fructose, glucose, manose, mannitol, sucrose, maltose and trehalose were quantified in polysaccharidic fraction, linoleic and stearic (only in Lactarius sp.) acids, and β- and γ-tocopherols were the main compounds in the lipidic fraction. C. atramentaria and X. chrysenteron phenolic fractions gave the highest free radical scavenging activity, reducing properties and lipid peroxidation inhibition in brain homogenates, which is in agreement with its highest content in total phenolics. Furthermore, among the polysaccharidic fractions C. atramentaria also gave the highest antioxidant activity, which is accordingly with its highest total polysaccharides content and sugars obtained after hydrolysis.The authors are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) and COMPETE/QREN/EU (research project PTDC/AGR-ALI/110062/2009) for financial support. L. Barros (BPD/4609/2008) and S.A. Heleno (BD/70304/2010) also thank FCT, POPH-QREN and FSE. The GIP-USAL is financially supported by the Spanish Ministerio de Ciencia e Innovación through the Consolider-Ingenio 2010 Programme (FUN-C-FOOD, CSD2007-00063), and Junta de Castilla y León (Grupo de Investigación de Excelencia, GR133)
    corecore