1,595 research outputs found

    Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States

    Get PDF
    Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision

    Locating regional health policy: Institutions, politics, and practices

    Get PDF
    Poverty reduction and health became central in the agendas of Southern regional organisations in the last two decades. Yet, little is known about how these organisations address poverty, inclusion and social inequality, and how Southern regional formations are engaging in power constellations, institutions, processes, interests and ideological positions within different spheres of governance. This article reviews academic literatures spanning global social policy, regional studies and diplomacy studies, and the state of knowledge and understanding of the ‘place’ of regional actors in health governance as a global political practice therein. It identifies theoretical and thematic points of connection between disparate literatures and how these can be bridged through research focusing on the social policies of regional organisations and regional integration processes. This framework hence locates the contributions of each of the research articles of this Special Issue of Global Social Policy on the regional dimension of health policy and diplomacy in relation to Southern Africa and South America. It also highlights the ways in which the articles bring new evidence about how social relations of welfare are being (re)made over larger scales and how regional actors may initiate new norms to improve health rights in international arenas engaging in new forms of ‘regional’ diplomacy

    Serum kynurenic acid is reduced in affective psychosis

    Get PDF
    A subgroup of individuals with mood and psychotic disorders shows evidence of inflammation that leads to activation of the kynurenine pathway and the increased production of neuroactive kynurenine metabolites. Depression is hypothesized to be causally associated with an imbalance in the kynurenine pathway, with an increased metabolism down the 3-hydroxykynurenine (3HK) branch of the pathway leading to increased levels of the neurotoxic metabolite, quinolinic acid (QA), which is a putative Nmethyl- D-aspartate (NMDA) receptor agonist. In contrast, schizophrenia and psychosis are hypothesized to arise from increased metabolism of the NMDA receptor antagonist, kynurenic acid (KynA), leading to hypofunction of GABAergic interneurons, the disinhibition of pyramidal neurons and striatal hyperdopaminergia. Here we present results that challenge the model of excess KynA production in affective psychosis. After rigorous control of potential confounders and multiple testing we find significant reductions in serum KynA and/or KynA/QA in acutely ill inpatients with major depressive disorder (N = 35), bipolar disorder (N = 53) and schizoaffective disorder (N = 40) versus healthy controls (N = 92). No significant difference was found between acutely ill inpatients with schizophrenia (n = 21) and healthy controls. Further, a post hoc comparison of patients divided into the categories of non-psychotic affective disorder, affective psychosis and psychotic disorder (non-affective) showed that the greatest decrease in KynA was in the affective psychosis group relative to the other diagnostic groups. Our results are consistent with reports of elevations in proinflammatory cytokines in psychosis, and preclinical work showing that inflammation upregulates the enzyme, kynurenine mono-oxygenase (KMO), which converts kynurenine into 3-hydroxykynurenine and quinolinic acid

    Can lepton flavor violating interactions explain the atmospheric neutrino problem?

    Get PDF
    We investigate whether flavor changing neutrino interactions (FCNIs) can be sufficiently large to provide a viable solution to the atmospheric neutrino problem. Effective operators induced by heavy boson exchange that allow for flavor changing neutrino scattering off quarks or electrons are related by an SU(2)LSU(2)_L rotation to operators that induce anomalous tau decays. Since SU(2)LSU(2)_L violation is small for New Physics at or above the weak scale, one can use the upper bounds on lepton flavor violating tau decays or on lepton universality violation to put severe, model-independent bounds on the relevant non-standard neutrino interactions. Also ZZ-induced flavor changing neutral currents, due to heavy singlet neutrinos, are too small to be relevant for the atmospheric neutrino anomaly. We conclude that the FCNI solution to the atmospheric neutrino problem is ruled out.Comment: 16 pages, no figures, Late

    Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons

    Full text link
    The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a new figur

    Black-hole concept of a point-like nucleus with supercritical charge

    Full text link
    The Dirac equation for an electron in the central Coulomb field of a point-like nucleus with the charge greater than 137 is considered. This singular problem, to which the fall-down onto the centre is inherent, is addressed using a new approach, based on a black-hole concept of the singular centre and capable of producing cut-off-free results. To this end the Dirac equation is presented as a generalized eigenvalue boundary problem of a self-adjoint operator. The eigenfunctions make complete sets, orthogonal with a singular measure, and describe particles, asymptotically free and delta-function-normalizable both at infinity and near the singular centre r=0r=0. The barrier transmission coefficient for these particles responsible for the effects of electron absorption and spontaneous electron-positron pair production is found analytically as a function of electron energy and charge of the nucleus. The singular threshold behaviour of the corresponding amplitudes substitutes for the resonance behaviour, typical of the conventional theory, which appeals to a finite-size nucleus.Comment: 22 pages, 5 figures, LATEX requires IOPAR

    Status of the solution to the solar neutrino problem based on non-standard neutrino interactions

    Get PDF
    We analyze the current status of the solution to the solar neutrino problem based both on: a) non-standard flavor changing neutrino interactions (FCNI) and b) non-universal flavor diagonal neutrino interactions (FDNI). We find that FCNI and FDNI with matter in the sun as well as in the earth provide a good fit not only to the total rate measured by all solar neutrino experiments but also to the day-night and seasonal variations of the event rate, as well as the recoil electron energy spectrum measured by the SuperKamiokande collaboration. This solution does not require massive neutrinos and neutrino mixing in vacuum. Stringent experimental constraints on FCNI from bounds on lepton flavor violating decays and on FDNI from limits on lepton universality violation rule out νeνμ\nu_e \to \nu_\mu transitions induced by New Physics as a solution to the solar neutrino problem. However, a solution involving νeντ\nu_e \to \nu_\tau transitions is viable and could be tested independently by the upcoming BB-factories if flavor violating tau decays would be observed at a rate close to the present upper bounds.Comment: 30 pages, 9 figures, Late

    Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies

    Get PDF
    BACKGROUND: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms
    corecore