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Abstract

Background: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm
lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental
system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation.
It would be desirable to identify a basal angiosperm experimental system that possesses many of the features
found in existing plant model systems (e.g., Arabidopsis and Oryza).

Results: We have considered all basal angiosperm families for general characteristics important for experimental
systems, including availability to the scientific community, growth habit, and membership in a large basal
angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or
aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of
Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated
self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for
Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months,
could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms.
An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence
reads.

Conclusions: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a
potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A.
fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical
pathways important in plant-insect interactions as well as human health, and various other features present in early
angiosperms.
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Table 1 A summary of relevant basal angiosperm characteristics

Order Family1,2 # Genera / species3 Familiar genera3 Growth form1,2 Commercially available

AMBORELLALES Amborellaceae 1/1 Amborella shrub no

NYMPHAEALES Nymphaeaceae 5/58 Nymphaea aquatic herb yes

Nuphar

Barclaya

Victoria

Euryale

Cabombaceae 2/6 Cabomba aquatic herb yes

Brassenia

Hydatellaceae 2/10 Hydatella aquatic herb no

Trithuria

AUSTROBAILEYALES Austrobaileyaceae 1/2 Austrobaileya liana no

Illiciaceae 3/92 Illicium shrub, tree yes

Schisandra

Kadsura

Trimeniaceae 1-2/6 Trimenia shrub, tree, liana no

CERATOPHYLLALES Ceratophyllaceae 1/6 Ceratophyllum aquatic herb yes

CHLORANTHALES Chloranthaceae 4/75 Chloranthus herb, shrub, tree no

Ascarina

Hedyosmum

Sarcandra

MAGNOLIALES Annonaceae 129/2220 Annona shrub, tree, liana yes

Guatteris

Xylopia

Uvaria

Polyalthia

Rollinia

Artabotrys

Asimina

Eupomatiaceae 1/3 Eupomatia shrub, tree yes

Magnoliaceae 2/227 Magnolia shrub, tree yes

Lioriodendron

Degeneriaceae 1/2 Degeneria tree no

Himantandraceae 1/2 Galbulimima tree no

Myristicaceae 20/475 Myristica shrub, tree yes

Horsfieldia

Virola

Knema

LAURALES Calycanthaceae 5/11 Chimonanthus shrub, tree yes

Calycanthus

Idiospermum

Sinocalycanthus

Hernandiaceae 5/55 Hernandia shrub, tree, liana no

Illigera
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Table 1 A summary of relevant basal angiosperm characteristics (Continued)

Lauraceae 50/200 Laurus shrub, tree, parasitic vine yes

Litsea

Ocotea

Cinnamomum

Cryptocarya

Persea

Lindera

Neolitsea

Nectandra

Phoebe

Apollonias

Beilschmiedia

Umbellularia

Monimiaceae 22/200 Doryphora shrub, liana no

Peumus

Xymalos

Mollinedia

Tambourissa

Kibara

Siparunaceae 2/75 Siparuna shrub, tree no

Glossocalyx

Gomortegaceae 1/1 Gomortega shrub, tree no

Atherosperma-taceae 6-7/16 Atherosperma shrub, tree no

Daphnandra

Doryphora

Dryadodaphne

Laurelia

Nemuaron

CANELLALES Canellaceae 5/13 Canella shrub, tree yes

Cinnamodendron

Cinnamosma

Winteraceae 4-7/60-90 Drimys shrub, tree yes

Zygogynum

Pseudowintera

Takhtajania

PIPERALES Hydnoraceae 2/7 Prosopanche parasitic herb no

Hydnora

Piperaceae 5/3600 Peperomia herb yes

Piper herb yes

Zippelia herb no

Manekia liana no

Verhuellia herb no

Saururaceae 5/6 Anemopsis herb yes

Houttuynia herb yes

Saururus herb yes

Gymnotheca herb no
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Table 1 A summary of relevant basal angiosperm characteristics (Continued)

Lactoridaceae 1/1 Lactoris shrub no

Aristolochiaceae 4/550 Saruma (1) herb yes

Asarum (ca. 86) herb yes

Thottea (ca. 29) shrub no

Aristolochia (ca. 450) herb, shrub, liana yes

Familiar genera include representatives from the family and are not intended to comprise a comprehensive listing. Taxa are considered “commercially available” if
one hundred plants or more can be purchased, inexpensively, and can be readily propagated from seed.
1[9].
2[17].
3Number of species shown for Aristolochiaceae genera from [18].
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Background
Our present understanding of genetics, genomics, devel-
opment, evolution, and physiology of living organisms
has benefited greatly from work done in model genetic
systems. Model systems provide more favorable condi-
tions for observing phenomena and testing hypotheses
than other systems afford. Models support inductive rea-
soning, in which one builds on the understanding of liv-
ing organisms in general, based on observations made in
a specific model organism [1]. Model organisms also
provide a focus for researchers to work on a common
system, resulting in collaborative and complementary
efforts that can yield rapid progress and development of
further resources. Models are crucial for understanding
basic biological processes.
Model organisms should have several key attributes.

They should share a number of characteristics of the
taxon or process they are chosen to represent [1,2] and
must be accessible [2] so that a broad community of
scientists can utilize and develop them. Models used for
developmental and genetic studies must also offer rapid
development, short generation time, be amenable to
large scale cultivation, have small seed size for easy stor-
age of many genotypes, and provide ample tissue for ex-
perimentation [1]. Models should also support forward
and reverse genetics, as is required for hypothesis testing
[3], and have a small genome size to facilitate molecular
genetics and genomics work, including genome sequen-
cing and assembly [4,5]. Finally, for studying the evolu-
tion of development, models should have both
conserved and unique features in comparison to related
species, so that comparative studies can elucidate the
mechanisms of phenotypic evolution [6].
Our current understanding of angiosperm evolution has

been shaped by multiple phylogenetic studies eg., [7-9] that
provide the organismal context in which the evolution of
any aspect of flowering plants is studied. Of particular
interest to both basic and applied plant biology are
changes leading to the success and diversification of angio-
sperm lineages, beginning with the early, mostly species-
poor lineages of angiosperms (Table 1) previously known
as the ANITA grade (Amborellaceae, Nymphaeales,
Illiciaceae, Trimeniaceae, and Austrobaileyaceae), followed
by the magnoliids (Figure 1). The genome of the shrub
Amborella trichopoda, the likely singular living sister
group to the rest of the living angiosperms, has been
mapped [10] and sequenced (www.Amborella.org), provid-
ing an ideal root for comparative genomic studies of all
other angiosperms [11]. The magnoliids contain four
major branches and several thousand species (Table 1,
Figure 1). Among the species in this lineage are the orna-
mental tree, Liriodendron tulipfera [12] and the fruit tree,
Persea americana [13], as well as the economically
important spice, black pepper (Piper nigrum) [14].
Taxa included in the magnoliids exhibit many features
first appearing in basal angiosperms or angiosperms in
general e.g., vessel elements, perianth bilateral symmetry,
alkaloid chemistry, specialized pollination systems, and di-
verse forms of female gametophyte development [3,15,16].
Recent phylogenetic studies have suggested that the mag-
noliids are the sister clade and therewith the closest out-
group to the species-rich and highly diverged monocot
and eudicot lineages [7-9].
The rich diversity of basal angiosperms provides

glimpses into early successful experiments in angio-
sperm adaptation [3,19-23]. Novel features which are
otherwise constrained by function may have evolved
more than once, through parallelism and convergence,
such as the structural and developmental similarities of
the inflorescence of the monocot Acorus with that found
in some Piperales (Piperaceae, Saururaceae; members of
Magnoliids) [24]. Basal lineages also retain evidence of
“trials” of features that became genetically fixed in later
lineages [25]. For example, perianth parts are quite vari-
able in basal angiosperms, as well as in basal eudicots
and basal monocots [26], and only became canalized
later on.
Current flowering plant genetic models are all derived

from the highly diverged monocot and eudicot lineages
(Figure 1). Among them, the monocot models Zea and
Oryza occur in Poaceae, which has specialized floral
organs and an inflorescence found only in that family.
Similarly, the current eudicot models are derived from
the rosid (Arabidopsis) and asterid (e.g., Antirrhinum,

http://www.amborella.org
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Figure 1 Angiosperm phylogeny based on Stevens [9], modified (http://www.mobot.org/MOBOT/research/APweb/welcome.html).
Important model systems and the proposed model, Aristolochia fimbriata, are shown next to the corresponding clade. Liriodendron, Persea,
Populus, and Carica are tree species. Species that have been used as flower development models are indicated with an asterisk.
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tomato) “core eudicot” lineages, each of which displays
lineage-specific floral forms [25,27]. Studies in current
plant models have led to the discovery of broadly homolo-
gous traits, including conservation of floral organ identity
genes (ABC/quartet models) [28-30]. These homologies,
and others observed in current plant models (Figure 1),
have suggested hypotheses about the common ancestor of
monocots and eudicots.
An understanding of the evolution of floral develop-

ment or any fundamental process in flowering plants
should include results from a basal angiosperm experi-
mental model in which functional hypotheses can be
tested [3,6,31-33]. Although the current model systems
represent well the highly successful and derived lineages
in which they occur, they do not represent the overall di-
versity of angiosperms. Information from basal lineages
is necessary to better describe that diversity, to polarize
the changes that occurred during angiosperm evolution,
and to make functional inferences about the common
ancestor of early angiosperms.
Current plant models have been selected to address par-

ticular questions, but very few are available for use both as
genomic and as genetic models. Genomic resources,
which emphasize plants with relatively small genomes,
have been developed for tree wood and fruit species, in-
cluding Populus [34], Liriodendron [12], Persea [35] and
Carica [36]. However, woody species are too large at ma-
turity and do not have short enough life cycles for general
use in genetic experiments. Forward genetics requires a
very small organism with a rapid life cycle, and is facili-
tated by the ability to self-pollinate individuals having
desired characteristics. Reverse genetics requires manipu-
lation of DNA or RNA in a targeted manner. Both benefit
from a small genome, and transformability is essential for
testing hypotheses about gene function. Therefore, we
sought to identify a basal angiosperm species having as
many important features of a model system as possible to
support its potential development into an experimental
system in genetics and genomics. We present these essen-
tial features in Aristolochia fimbriata - small size at ma-
turity, rapid life cycling, self-compatibilty, small genome
size, and transformability - along with relevant findings
for other taxa evaluated in our study.

Results
Evaluation of potential models in basal angiosperm
orders and families
We followed a formal selection process to identify a suit-
able candidate for an experimental organism among
basal angiosperms (Figure 2). Many basal angiosperms
are uncommon, with limited distribution, and often
occur in families with only one genus and few species
(Table 1). Taxa were considered readily accessible to a
broad scientific community if they could be obtained
commercially at a low price and could be readily pro-
pagated by seed. Those of limited availability were
eliminated, including Amborellales (Amborellaceae),
Austrobaileyales (Illiciaceae, Austrobaileyaceae, Trime-
niaceae), and Chloranthales (Chloranthaceae) (Figure 2).
Next, we eliminated groups of plants sharing a growth

habit associated with barriers for use as a genetic model.
Woody plants requiring a year or more to attain maturity,
as well as extensive space for cultivation, were elim-
inated (Figure 2). These included most Magnoliales (Myris-
ticaceae, Magnoliaceae, Annonaceae, Himantandraceae,
Degeneriaceae, Eupomatiaceae), Laurales (Lauraceae, Her-
nandiaceae, Monimiaceae, Atherospermataceae, Gomorte-
gaceae, Siparunaceae, Calycanthaceae), and Cannellales
(Cannellaceae, Winteraceae). The forest tree species, Lirio-
dendron (Magnoliaceae) and the fruit tree Persea (Laura-
ceae), were among those eliminated due to woody habit
and long generation time. Many of the families listed above
would also be eliminated due to limited commercial
availability, as e.g., Trimeniaceae, Himantandraceae, and
Gomortegaceae (Table 1). Similarly, many of the families
eliminated for limited accessibility have a woody habit
(Table 1); these would have been eliminated for that charac-
ter even if they had been more accessible (e.g., Amborella
trichopoda). Plants with an aquatic habit, including water
lilies (Nymphaeales: Nymphaceae, Cabombaceae) and Cera-
tophyllum (Ceratophyllales: Ceratophyllaceae), were elimi-
nated due to the extensive cultivation requirements
associated with maintaining large numbers of individual
aquatic plants, as well as the difficulty in developing self-
pollination and transformation protocols in an aquatic en-
vironment (Figure 2). Orders composed entirely of woody
or aquatic plants were eliminated after review and consider-
ation of the species comprising them.
The order Piperales (Aristolochiaceae, Hydnoraceae,

Piperaceae, Saururaceae, Lactoridaceae) contains several
herbaceous taxa (Table 1). Parasitic plants (Hydnoraceae)
and those with highly reduced flowers (Saururaceae, Piper-
aceae) do not generally represent angiosperms, and so were
eliminated (Figure 2). Hydnoraceae and Lactoridaceae
would also be excluded due to limited availability (Table 1).
Among the basal angiosperm families, only Aristolochia-
ceae contains highly accessible, easily cultivated herbaceous
plants with features broadly representative of angiosperms
in general.

Aristolochiaceae candidates considered
We surveyed Aristolochiaceae, seeking species with
rapid growth, no requirement for vernalization in the life
cycle, ease of large scale cultivation, and a small genome
size to facilitate gene function studies and genome se-
quencing and assembly (Figure 2). Members of genus
Aristolochia have some of the smallest basal angiosperm
genome sizes currently known (Figure 3). Therefore, we



Figure 2 Overall approach for selecting a basal angiosperm model system. General criteria are indicated; for full description refer to
methods. Taxa eliminated after initial application of each criterion are indicated. Some taxa may have been eliminated for more than one reason.
For example, Illicium, in family Illiciaceae, is increasingly available in cultivation, unlike most Austrobaileyales, but was eliminated due to its woody
growth habit. Many taxa in Piperales were generally accessible and of amenable growth habit, yet family Lactoridaceae was eliminated due to
inaccessibility and woodiness. In genus Aristolochia, subgenus Pararistolochia was eliminated due to large genome size. Basal angiosperm family
characteristics and those of Aristolochiaceae species cultivated are described in Tables 1 and 2.
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evaluated each genus in this family to identify the best
species for model system development. Subfamily Asar-
oideae genera (Asarum, Saruma) (Figure 4A and B) re-
quire cold treatment to induce flowering, resulting in
increased culturing efforts and extended time to flower,
so they were eliminated (Figure 2). Thottea, here repre-
sented with T. siliquosa (Figure 4C), was not possible to
obtain for a detailed cultural survey (Table 2), as it can
only be cultivated with very high maintenance, under a
narrow range of conditions. Furthermore, it grows



Figure 3 Genome sizes in basal angiosperm families. Bennett and Leitch [38] updated with Cui et al. [39], shown on logarithmic scale. Filled
symbols indicate taxa used in The Floral Genome Project (www.floralgenome.org) or The Ancestral Angiosperm Genome Project (http://ancangio.
uga.edu/), and for which EST resources are available. Compare basal angiosperm genome sizes to Arabidopsis at 125 Mb [40] and Oryza at 389
Mb [41]. The symbol representing Aristolochia is the proposed model Aristolochia fimbriata. Other species of Aristolochia have smaller genome
sizes (see Figure 5, Table 4).
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slowly, produces little tissue, few flowers, and few seeds.
Of the Aristolochia species available for culturing, those
requiring cold treatment (e.g. A. serpentaria, other
members of subgenus Isotrema and A. clematitis,
Figure 4D) were eliminated from consideration. Mem-
bers of subgenus Pararistolochia (Figure 4E) were not
available for culturing or are large vines with a long life
cycle. Those species that did not bloom in six months
(A. californica, A. anguicida, A. macrophylla, A. tomen-
tosa), produced very few flowers (A. trilobata, A. passi-
florafolia; Figure 4 F and G), or formed very large vines
(A. grandiflora, A. ringens, A. labiata, A. gigantea)
(Table 2, Figure 2) were also eliminated. The remaining
candidates that met our criteria were two smaller mem-
bers of subgenus Aristolochia (A. elegans and A. fim-
briata), belonging to a group of subtropical and tropical
species from South and Central America [18,37].

A phylogenetic perspective of genome sizes
Because a small genome size facilitates molecular and
functional investigation of genes of interest, including
cloning and characterization of both coding and regula-
tory regions, and genome sequencing and assembly, our
analysis of genome size evolution in Aristolochiaceae fo-
cused on species having small genomes, particularly in
subgenus Aristolochia, for which we report here the
smallest genome size to date from a basal angiosperm
(A. lindneri) (Figure 5). In order to gain insight into the
evolution of genome structure as well as genome size in
Aristolochiaceae, chromosome numbers from previously
published studies [43,44] were plotted along with gen-
ome sizes on a strict consensus tree using TreeGraph
[45] (Figure 5, see also Additional file 1: Phylogram of
Aristolochiaceae relationships).
A direct correlation between chromosome numbers and

genome size for the family of Aristolochiaceae was not
observed. Aristolochiaceae is subdivided into two subfam-
ilies, Asaroideae and Aristolochioideae. Asaroideae, which
has 2n= 26, 52 (Saruma henryi) and 2n=26 (Asarum cau-
datum) chromosomes, has about two to ten times the
genome size of genus Aristolochia (Figure 5). Thottea, the
earliest diverging branch in subfamily Aristolochioideae
has the same number of chromosomes (2n=26) as Asarum
and Saruma, but has only 1/9 and 1/5 of the genome size
of Asarum and Saruma, respectively.
In contrast, within genus Aristolochia, species in sub-

genus Aristolochia exhibit the smallest genome sizes, but
have a wide range of chromosome numbers. Species in
subgenus Isotrema (Figure 4D) are generally character-
ized by 2n=32 chromosomes and have small genome
sizes (554-774 Mbp mean genome size, 1C). Within sub-
genus Pararistolochia (Figure 4E) (1793-4321 Mbp mean

http://www.floralgenome.org/
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Figure 4 Diversity of flower and growth forms in Aristolochiaceae. Herbaceous perennials with radially symmetric 3-merous flowers include
A. Asarum chingchengense B. Saruma henryi C. Thottea siliquosa, a small shrub D. A. arborea (subgenus Isotrema), a tree-like shrub with flowers
that mimic fungi E. A. triactina (subgenus Pararistolochia) F. A. trilobata (subgenus Aristolochia) with three lobed, evergreen leaves, grows as a vine
with woody branches (liana) from which new growth emerges. G. A. passiflorafolia (subgenus Aristolochia) (photo used with permission from
Changbin Chen) and H. A. fimbriata (subgenus Aristolochia).
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genome size, 1C), which is sister group to subgenus
Aristolochia, and therefore nested within the clade
having species with small genomes, a lineage-specific
increase in genome size can be seen. The increase is not
associated with an increase in chromosome number,
but in chromosome size [43]. The Australian species
of Pararistolochia have less than half of the genome size
of the African species, but still have the same number of
chromosomes [43]. Within the subgenus Aristolochia
(Figure 4F, G and H), the different monophyletic groups
recovered (Figure 5; see also Additional file 1: Phylogram
of Aristolochiaceae relationships) are in accordance with
previous studies [14,18]. It is interesting to note that
Asarum and subgenus Pararistolochia have large chro-
mosomes similar to those of monocots, whereas the
remaining clades in Aristolochiaceae have small chromo-
somes [43]. Aristolochia fimbriata is a member of a
clade of Aristolochia species with 2n=14 chromosomes
and genomes roughly the size of Oryza sativa.

Methods for genetics
We further evaluated selected taxa for self-compatibility
and potential for genetic engineering, both of which are
critical features of genetic systems. Self-pollination



Table 2 Cultivation features for 25 Aristolochiaceae taxa considered

Taxon Floral productivity Low maintenance Dormancy required Reported self fertile1

ASAROIDEAE

Saruma henryi Oliv. + ++ facultative

Asarum canadense L. + ++ yes

ARISTOLOCHIOIDEAE

Thottea siliquosa (Lam.) Hou + + no

Aristolochia L

subgenus Isotrema

A. serpentaria L. + +++ facultative

A. macrophylla Lam. ++ + facultative

A. californica Torr. ++ no

A. tomentosa Sims +++ + facultative

A. holostylis (Duchartre) F. Gonzalez + + no

subgenus Pararistolochia

A. goldieana (Hook.f.) Hutch. & Dalz + ++ no

A. prevenosa F.Muell. + ++ no

A. promissa (Mast.) Keay + ++ no

A. triactina (Hook. f.) Hutch & Dalz + ++ no

subgenus Aristolochia

A. acuminata Lam. ++ ++ no

A. anguicida Jacq. ++ ++ no

A. clematitis L. +++ +++ yes

A. elegans Mast. ++ ++ no ++

A. fimbriata Cham. +++ +++ facultative ++

A. gigantea Mart. & Zucc. + + no

A. grandiflora Sw. + + no

A. passiflorafolia Rich. + + no

A. ringens Vahl. + ++ no +

A. trilobata L. + ++ no

A. lindneri Berg. + + no

A. maxima Jacq + ++ no

Aristolochia sp. + ++ no

Observed presence of advantageous features indicated with plus sign. Observations were made either in the Biology Department greenhouse at Penn State
University or at the Botanical Gardens of Dresden or Bonn.
1 after Petch [42].
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experiments were conducted with A. elegans and A. fim-
briata because of their small genomes, ease of culture,
and prolific flowering (Figure 2, Table 2). Both species
could be hand pollinated to accomplish cross- and self-
pollination events using simple methods, as described in
Additional file 2: Cultivation Supplement. Morphological
changes in the perianth and gynostemium associated
with maturation of the anthers and stigmatic surfaces
are described for A. fimbriata from the day of anthesis
(day 1) through day 3 (Additional file 2: Figure S1). Self-
pollination in A. fimbriata was most effective on day 2,
both in terms of fruit production and seed viability
(Additional file 2: Figure S2, Additional file 2: Table S3).
Using in vitro germination methods, 59% of seeds
produced in open-air pollinations of A. fimbriata germi-
nated normally, compared to 50% of seeds produced
from self-pollination of day 2 flowers (Additional file 2:
Table S3). Further details are provided in Additional file
2: Cultivation Supplement.
Agrobacterium tumefaciens-mediated genetic trans-

formation experiments were performed with two var-
ieties of A. fimbriata (NV, VL) and with Saruma henryi.
The binary vector utilized [46] contained a neomycin
phosphotransferase marker gene (NPTII) for antibiotic
selection and an enhanced green fluorescent protein re-
porter gene (EGFP); both genes were under the control
of the E12-Ω CaMV-35S promoter [46]. High frequency
transient expression was observed in the leaf explants at
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7 days after culture initiation (Figure 6A-D), followed by
production of transgenic calli and shoot primordia at 24
days after culture initiation (Figure 6E and F). Stable
transformation (evident 30 days after culture initiation)
was observed in 40% of the S. henryi explants (n=25),
and in 58% of the A. fimbriata explants (n=59). Add-
itionally, transgenic calli, shoot, and root primordia
(Figure 6G, 6H) were successfully regenerated from stem
explants of A. fimbriata tissue cultured plants, with
EGFP expression visible in a distinct subset of the regen-
erating tissues (Figure 6I and J). The integration of EGFP
in the transgenic calli was confirmed by genomic PCR
analysis (Figure 6K). The PCR reactions including DNA
from green fluorescent calli (Figure 6K, lanes 3-5)
resulted in the amplification of one 427 bp fragment
identical to the control reaction including plasmid
pGH00.0131 DNA (Figure 6K, lane 7). Amplification
was not detected in the control reaction containing
DNA from non-transgenic Aristolochia leaf tissue
(Figure 6K, lane 2) or in the control reaction without
DNA (Figure 6K, lane 6).

Physical and life cycle features of Aristolochia fimbriata
We characterized the physical and life cycle features of
Aristolochia fimbriata (Figure 4H) to further assess its
potential as a model system. Seeds planted in potting
medium in the greenhouse germinated at rates up to
100%, and flowered in as few as 62 days after planting.
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(See figure on previous page.)
Figure 6 Green fluorescent protein expression in Aristolochiaceae. A, C, E, G, I . Light images. B, D, F, H, J. Fluorescent images. A-D. Leaf
explants 10 days after Agrobacterium tumefaciens infection A, B. Saruma henryi C, D. A. fimbriata E, F. Regenerating A. fimbriata stem explant. G, H,
I, J. Regenerating A. fimbriata roots (one root is shaded from light source in G). K. Gel image of PCR products; Lane L- 200bp ladder, bright band
at 1K bp with corresponding bands at each 200bp; Lane 2- A. fimbriata (WT) DNA; Lane 3- In vitro transformed callus 1; Lane 4- In vitro
transformed callus 2; Lane 5- In vitro transformed callus; Lane 6- Negative Control; Lane 7-Plasmid PC (1 ng/ul).
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Cultivated as a small pot crop in the greenhouse, A. fim-
briata stock plants occupy minimal bench space
(Figure 7A), and were not particularly susceptible to any
pest or pathogen, though commercial pesticide treat-
ments were applied greenhouse-wide as needed. Vines
are supported by a small trellis during periods of flower-
ing or fruit ripening (Figure 7B) to prevent mechanical
damage and facilitate fruit harvest. Plants flower copi-
ously from axillary nodes on multiple indeterminate
stems that arise from the tuberous underground organ.
A new flower opens every two to three days along the
stem (Figure 7C) facilitating collection of staged tissues.
Fruits from open-air pollinations on one-year-old plants
averaged over one hundred seeds per capsule. Seeds are
heart-shaped and small (~5x4x1 mm) and about 500
seeds can be stored in a 15-ml tube.
Although seasonally green in its native habitat, A. fim-

briata grows year round in greenhouse culture. It forms
a large perenniating tuber that can be divided to produce
clones. Stems can be pruned back to the tuber after fruit
collection to support greenhouse sanitation efforts, or
“as needed” to stimulate new growth. New stems gener-
ated in this way will flower in two weeks. Fruit size, leaf
size, and number of seeds increase in older, larger plants.
A

1 meter

1.5 
met

C

Figure 7 Aristolochia fimbriata. A. Twelve three-year old stock plants ma
the greenhouse B. Plants in use for genetic crosses, seed or tissue collectio
successive developmental stages on one stem [with arrows].
The longevity of individual plants provides an ongoing
source of seed from a single experimental subject.
We developed in vitro methods for germinating seeds to

support collection of seedling tissues and for comparisons
of seed viability. Light during germination is required for
true leaves to emerge. Seeds germinated significantly bet-
ter in wet toweling (mean= 61%) compared to germin-
ation on plates containing solid, sucrose-free media
(mean=9%). Light and age of seed (up to 2.5 years) had no
significant effect on germination with 80% germinating by
70 days. More details are available in Additional file 2:
Cultivation Supplement.

A large database of expressed gene sequences
The Ancestral Angiosperm Genome Project (http://
ancangio.uga.edu/) has selected Aristolochia fimbriata
for deep EST sequencing using a combination of trad-
itional capillary [35] and extensive next generation (454,
Illumina) sequencing of libraries constructed from mul-
tiple vegetative and reproductive tissues and stages.
There are currently 36,248 Sanger EST sequences avail-
able from A. fimbriata libraries made from RNA from
pre-meiotic flower buds (15,759 sequences) and a
mixed library from multiple vegetative tissues (20,489
B

5 cm

er

intained in pots (12 cm diameter) occupy 1 m x 1.5 m bench space in
n are trellised C. Close-up of vine showing flowers and floral buds at

http://ancangio.uga.edu/
http://ancangio.uga.edu/
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sequences). Over 3.8 million 454FLX ESTs are available
from eleven non-normalized libraries representing pre-
and post-meiotic floral buds, open flowers, early and late
stage seedlings, terminal/axial buds, roots, young and
mature leaves, and early and late stage developing fruits.
Sequences have been cleaned, assembled, and posted to
searchable public databases (see Methods).
Although detailed results using the A. fimbriata EST

sequences will be presented elsewhere, we have initially
characterized the Aristolochiaceae EST database here using
BLAST analyses as described in Albert et al. [35] to identify
putative homologs of many interesting regulatory and sig-
naling genes (see Table 3 for examples). Aristolochia cDNA
sequences had greater sequence similarity with other
monocot or eudicot species (e.g., Vitis, Poplar and Oryza)
than with Arabidopsis, highlighting the important role A.
fimbriata will play in rooting phylogenetic analyses of gene
function (Table 3, and additional results not shown). Con-
sistent with the composition of tissues included in the li-
braries, we found putative orthologs of many genes
important for development such as auxin efflux carrier
PIN1, phytochrome signaling protein GIGANTEA, as well
as floral development regulators AP3, AINTEGUMENTA,
and SEP3 (Table 3). Maximum likelihood analyses of two
genes reported in Table 3 illustrate contributions of Aristo-
lochia to the interpretation of gene family evolution in
angiosperms. Orthologs for alpha-galactosidase (Additional
file 3: Maximum likelihood analysis of orthologs for alpha-
galactosidase (ATAGAL1; AT5G08380)) identify an ancient
gene duplication in a common ancestor of angiosperms
(blue star). Orthologs for the MYB-domain protein AS1 in
Arabidopsis, PHAN in Antirrhinum, and ROUGH-
SHEATH in maize (Additional file 4: Maximum likelihood
analysis of orthologs for MYB-domain protein ASYM-
METRIC LEAVES 1 (AS1; AT2G37630)) identify an an-
cient gene duplication in a common angiosperm ancestor
(blue star) and a second gene duplication specific to A. fim-
briata (green star).

Discussion
Aristolochia fimbriata has many characteristics of a
valuable experimental model
A basal angiosperm experimental system is needed to
analyze basal angiosperm gene functions and to test hy-
potheses about the evolution of developmental and bio-
chemical pathways in flowering plants. The herbaceous
basal angiosperm Saruma henryi was selected for deep
EST sequencing by the Floral Genome Project [35] and
was initially considered for development as a model gen-
etic system, but the slow growth, need for vernalization,
and low flower and fruit production of Saruma prompted
a thorough investigation of all other basal angiosperms,
with the specific aim to identify a species more amenable
to genetic experimentation. After evaluating 29 basal
angiosperm families, including in situ assessment of over
20 species in family Aristolochiaceae and in vitro
transformation of two species, we found in Aristolochia
fimbriata many of the features desired in a genetic
experimental system. A. fimbriata has the physical fea-
tures for large-scale greenhouse cultivation, including
robust container growth, continuous flowering, and self-
compatibility, permitting the production of large numbers
of homozygous individuals required for gene functional
analysis in a single life cycle. We have begun to develop
inbred lines to facilitate genome mapping and large scale
mutagenesis experiments. High-efficiency transformation
with a GFP construct allows rapid, nondestructive identifi-
cation of transformed tissues for subsequent processing,
and our in vitro micropropagation and regeneration meth-
ods can yield greenhouse acclimated plants in three
months [47]. Individual A. fimbriata plants survive indef-
initely, providing ongoing access to mutant lines that can
be cloned for distribution to the research community.
Currently available for analysis, the VL and NV genotypes
possess a number of readily discernible traits including
leaf variegation (Figure 8A and C) and perianth details
(Figure 8B, D and E) amenable to investigation at the gen-
etic level. Further inbreeding and crossbreeding of these
and other genotypes can be used to dissect the genetic
basis for phenotypic differences, yield useful markers,
identify linked genes, and ultimately contribute to map-
ping and assembling the A. fimbriata genome sequence.

Aristolochia fimbriata is well positioned for studies of the
evolution of development
Aristolochia fimbriata is in a strong phylogenetic pos-
ition to support comparative and evolutionary studies.
Aristolochiaceae, with its approximately 550 species in
four genera [18], is one of the most diverse and speciose
families among the basal angiosperms. The largest genus
in the family, Aristolochia contains approximately 450
species, and has long been of interest to botanists due to
its monosymmetric, unipartite insect-trapping perianth
(Figure 8E) and an unusual gynostemium, which is a
structure formed by the fusion of the gynoecium with
the anthers. A. fimbriata is a typical member of the family,
such that its flower was modelled in glass by Leopold and
Rudolf Blaschka in the latter half of the nineteenth century
[48]. A. fimbriata differs from closely related Aristolochia
species in several late stage modifications (e.g., fimbriae,
papillae, pubescence), and in well-documented aspects of
perianth and gynostemium development [49,50]. These
features are potentially suitable for molecular analysis and
studies of gene function using an A. fimbriata experimental
system.
Comparisons between closely related taxa in Aristolo-

chiaceae could support discovery of differences respon-
sible for inter- and intra-generic speciation and may



Table 3 Orthologs of genes involved in development, cell wall biosynthesis, and stress response in A. fimbriata EST
assemblies

Annotation ESTs Length Identity Evalue AGI

Development

CLV2 protein kinase maintenance of stem cell populations (Vitis vinifera) Aristolochia|b3_lrc17313 69 1806 51% 5e-137 AT1G65380

GIGANTEA (Vitis vinifera) Aristolochia|b3_c14545 168 1770 58% 9e-157 AT1G22770

PIN1 auxin efflux carrier (Arabidopsis thaliana) Aristolochia|b3_lrc14465 123 1805 68% 0 AT1G73590

AINTEGUMENTA (Carica papaya) Aristolochia|b3_c20214 41 1991 84% 2e-161 AT4G37750

ASYMMETRIC LEAVES 1 (AS1), homologous to maize RS1 (Vitis vinifera) Aristolochia|b3_c2263 119 1553 50% 2e -93 AT2G37630

SEP3 MADs box transcription factor (Vitis vinifera) Aristolochia|b3_c2250 108 1131 70% 3e-105 AT1G24260

RNA Slicer that selectively recruits microRNAs and siRNAs (Arabidopsis thaliana) Aristolochia|
b3_c16036

158 3157 82% 0 AT1G48410

NAC containing domain (Vitis vinifera) Aristolochia|b3_c613 521 1598 61% 2e-135 AT5G61430

AP3/APETALA 3 DNA binding/transcription (Vitis vinifera) Aristolochia|b3_c14320 154 1084 46% 6e -67 AT3G54340

Cell wall biosynthesis

Cinnamoyl alchohol dehydrogenase, putative (Vitis vinifera) Aristolochia|b3_c675 405 1559 74% 8e-168 AT1G72680

ATAGAL1 alpha-galactosidase similar to ATAGAL2 (Vitis vinifera) Aristolochia|b3_c1141 231 2016 73% 2e-179 AT5G08380

Xyloglucan endotransglucosylase/hydrolase (XTH9) (Populus trichocarpa) Aristolochia|b3_lrc29524 21 783 77% 7e -45 AT4G03210

EXPA10: expansin involved in the formation of nematode-induced syncytia in roots (Carica papaya)
Aristolochia|b3_c2232

340 1444 65% 3e-106 AT1G26770

Stress response

BASIC CHITINASE in ethylene/jasmonic acid mediated signalling pathway during SAR (Populus
trichocarpa) Aristolochia|b3_c857

301 1486 60% 1e -88 AT3G12500

Zeaxanthin epoxidase gene (Arabidopsis thaliana) Aristolochia|b3_c15151 113 1864 70% 0 AT5G67030

MAP KINASE 3 (MPK3) upregulated in response to touch, cold, salinity, chitin (Carica papaya)
Aristolochia|b3_c14569

185 1655 78% 0 AT3G45640

POM-POM1; Chitinase-like protein essential for tolerance to heat, salt, drought stresses (Vitis vinifera)
Aristolochia|b3_c843

723 1465 72% 1e-134 AT1G05850

Salt tolerance protein (STO) (Populus trichocarpa) Aristolochia|b3_c701 348 1661 52% 1e-171 AT1G06040

RAR1 disease resistance protein; Required for R protein accumulation (Carica papaya) Aristolochia|
b3_c23

694 1245 64% 5e -93 AT5G51700

All assembled unigenes (http://ancangio.uga.edu/) were searched (blastx) against the sequenced plant genomes of Arabidopsis thaliana, Oryza sativa, Populus
trichocarpa, Vitis vinifera, Carica papaya, Medicago truncatula, and Sorghum bicolor (http://www.floralgenome.org/tribedb/index.pl). Values reported are the number
of ESTs comprising each unigene, the unigene length (bp), percent amino acid identity of the best blastx hit, e-value, Arabidopsis AGI, and the annotation of the
best Arabidopsis hit as well as the species with the best overall hit following (in parentheses) and the Aristolochia unigene number.
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resolve long-standing questions about the origins of
floral structures. Unlike the species-rich genus Aristolo-
chia, the three other genera in the family (Saruma
(Figure 4A), Asarum (Figure 4B), and Thottea (Figure 4 C))
have radially symmetric perianths, and account for ap-
proximately 100 species (Table 1). The bilaterally sym-
metric perianth of Aristolochia represents the most
“basal” occurrence of this important floral adaptation in
angiosperms. A. fimbriata presents the opportunity to in-
vestigate the genetic basis of bilateral symmetry in mag-
noliids and compare it with that found in the eudicot
models Antirrhinum [51] and Lotus [52]. Existing micro-
scopic studies of anatomy and development in Aristolo-
chiaceae will facilitate comparative and functional studies,
and provide insight into the evolution of development in
this family. For Saruma the anatomy of stem, leaf,
flower, and pollen have been described [53,54], and
across Aristolochiaceae, ovule and seed development
[55], microsporogenesis [56], female gametophyte evolu-
tion [15,57], and inflorescence morphology [58] have
been described in detail.
Morphological and gene expression studies indicate

Aristolochiaceae offers an excellent system in which to
study the role of homologs of B-class MADS-box genes,
which are required for the organ identities of petal and
stamen in higher eudicots and putative homologous
organs in grasses [28,59]. The flower of the monotypic
genus Saruma (Figure 4B) with its apparent sepals,
petals, stamens, and carpels resembles that of the typical
magnoliid flower more than any other species in the
family. Putative homologs of B-class genes (AP3, PI) are
expressed in the stamens of Saruma and in its petaloid
whorl which is of staminoid origin [60]. Putative AP3
homologs have been found in Thottea and Asarum
[61,62], and are expected to be expressed in the stamens
and appendages opposite the sepals (which have been

http://ancangio.uga.edu/
http://www.floralgenome.org/tribedb/index.pl


Figure 8 Aristolochia fimbriata genotype and perianth detail. A, B. VL genotype C, D. NV genotype A, C. Presence, absence of leaf
variegation B, D. Perianth varies in shape and color E. Perianth is highly modified for insect pollination. Modifications include limb (li), tube (tu),
syrinx (sy), utricle (ut) and gynostemium (gy), which has stamen locules on the outside and interior stigmatic surfaces. Glass model by Leopold
and Rudolph Blatschka made near Dresden, Germany illustrated by Fritz Kredel (reproduced with permission).
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interpreted to be petaloid) in those genera [49,50,63-66].
In Aristolochia, putative B-gene homologs are expressed
in the stamens, and also in the innermost, specialized
cells of the outermost (and only) perianth whorl [67]
which has been interpreted as a calyx [49,67]. Although
the expression of putative homologs of the B-class genes
in Saruma and Aristolochia [67] suggests they do not
regulate perianth form by determining typical floral
organ identity, expression is consistently found in pollinator-
attracting structures of the flower. Homologs of B-class genes
might regulate other aspects of perianth development and
might not be required at all for perianth identity in Aristo-
lochiaceae. Experimental evidence from Aristolochiaceae
is needed to determine what role B-class homologs play in
basal angiosperm floral development, particularly since
the expression patterns of these genes in the first perianth
whorl of other basal taxa is variable [61,68,69]. Gene func-
tion in Aristolochiaceae can be investigated in A. fim-
briata using sequences from Aristolochia and three other
genera in the family.

Aristolochia contains highly developed biochemical
pathways offering insight into evolution of biochemical
synthesis and coevolution with insects
Aristolochiaceae produce a complex mixture of secondary
metabolites, as is common in basal angiosperms. In par-
ticular, aristolochic acids and aristolactams are produced
in Aristolochiaceae and are found throughout Piperales
and the basal eudicots (reviewed in [70]). Compounds
produced by alkaloid biosynthesis pathways in the poppy
family (Papaveraceae, Ranunculales) are of great pharma-
cological importance, and it is a parallel pathway in
Aristolochiaceae that yields aristolochic acids and aristo-
lactams which are important for public health. Over 680
reports of traditional pharmacological use of about 100
species of Aristolochia have been compiled in a review
[71]. The common name “birthwort” attributed to Aristo-
lochia refers to traditional use of some species, particularly
extracts from root tissues, as abortifacients, emmenago-
gues, or post-coital antifertility agents [72]. More recently,
constituents of primarily root extracts from Aristolochia
species have been isolated and evaluated for biological ac-
tivity as antibiotics, antivenoms and tumor-inhibiting
agents [73-80], although aristolochic acids become bioac-
tivated and carcinogenic when ingested [81,82].
In addition to its pharmacological properties, Aris-

tolochia provides an opportunity to explore coevolu-
tion of secondary metabolites with insects. Dipterans
commonly serve as pollinators in Aristolochia [42,83-87],
sometimes having specialized, mutualistic relationships
involving egg deposition in the flowers [88-91]. Dip-
teran pollinators are thought to be attracted to sec-
ondary metabolites mimicking the aroma of a food
source [42,91], or acting as pheromones to attract spe-
cies-specific, sex-specific pollinators [92], or stimulating
oviposition [89].
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Aristolochia species are also important host plants for
the larval stages of swallowtail butterflies (Papilionidae,
Lepidoptera) [93-98]. Secondary metabolites found in
particular Aristolochia species are critical for the defense
and survival of associated swallowtail butterfly species
during their feeding stage, such that the decline of
butterfly populations is attributed to decreased distribu-
tions of particular Aristolochia species [99]. Finally, sec-
ondary metabolites of Aristolochia and related species
are of interest for their repellent, insecticidal, and anti-
feedant activities in herbivorous plant pests [100-102].
Biochemistry in Aristolochia can be evaluated in green-
house grown or micropropagated plants, using chemical
analyses (e.g., mass spectroscopy, gas chromatography)
to further characterize constituents of specific plant tis-
sues in A. fimbriata. Biochemical pathways can be fur-
ther investigated using transformed roots or callus
(Figure 6G, H, I and J) currently available in the
transformation-regeneration system, without further
optimization.

Aristolochia can provide insight into development of
woodiness
Woodiness is an important seed plant feature, both for
commercial and ecological purposes [9]. Growth forms
within the Aristolochiaceae vary widely, presenting an op-
portunity to investigate growth form traits including flexi-
bility, stiffness, and woodiness of closely related species
[103]. Aristolochiaceae are most commonly perennial,
self-supporting herbs (Figure 4A, B), procumbent or trail-
ing, non-self-supporting vines (A. passiflorafolia, A. fim-
briata) (Figure 4G, H), and woody lianas (Figure 4 F).
Rarely, they are small woody shrubs (Figure 4C); and even
more rarely trees (or tree-like forms) (Figure 4D). Early di-
verging members of the family (Asarum and Saruma) are
characterized as perennial rhizomatous herbs, and the
sister group to Aristolochia is comprised of the woody
sub-shrub Thottea (Figure 4C). Perennial herbs appeared
iteratively in the topology (Figure 5) of the family phyl-
ogeny and are nested within groups of woody vines. Most
eudicots and monocots are modular organisms with inde-
terminate body plans. Shifts in the ontogenetic trajectory
may be expected to have a profound effect on the overall
size and potential life history of the descendant. This effect
might have played a key role in growth form evolution
and the development of flexibility, stiffness, and woodiness
in Aristolochiaceae [103-105]. Differences in these growth
form traits can be investigated in Aristolochia species of
interest, including A. fimbriata, beginning with cellular
level observations and descriptions of development of sec-
ondary growth (“wood”). Molecular and cell biological
methods can be used to locate and describe in Aristolo-
chia homologs of genes involved in growth form traits in
other species (e.g., Arabidopsis, Populus, Liriodendron), to
further characterize the role of interesting gene products
in Aristolochiaceae.

Aristolochia might reveal features of the ancestor
common to monocots and eudicots
Aristolochiaceae occurs in Piperales, in the magnoliid
clade, which is the most species-rich basal angiosperm
clade and sister to the very large and diverse monocot
plus eudicot clades [7-9]. As such, Aristolochia can pro-
vide a close outgroup for analysis of ancestral traits in
the major groups of angiosperms. The ancient features
of different lineages in Piperales have long been recog-
nized, earning them classification as “paleoherbs” in
early works [106,107]. In addition to being less woody
than other basal angiosperm families, Aristolochiaceae
and close relatives show a mixture of features of mono-
cots and eudicots. Traits shared with eudicots include
seedlings with two cotyledons and secondary growth
from a vascular cambium. The more ancestral clade,
Asaroideae, is comprised of rhizomatous perennials
similar to basal monocots and eudicots. Also found in
Piperales are aquatics (i.e., Saururaceae), a common
adaptation also found in both basal eudicots and mono-
cots (e.g. Ranunculales, Acorales, Alismatales). Piperales,
and Aristolochiaceae in particular, displays other features
more commonly associated with monocots, including
trimerous flowers, median prophylls (which are shared
with nearly all monocots and only few eudicot clades),
and subtype PII sieve-tube plastids [108,109]. Piperales
also share distichous placement of leaves and palmate
leaf venation with early diverging monocots (Alisma-
tales, Arales). Indeed, in some phylogenies, Piperales
appear as the closest relative to Acorus, the sister of
all other monocots [110]. Consequently, many features
in monocots and eudicots, both genetic and pheno-
typic, can be expected to have a homolog in Aristolo-
chiaceae and its relatives, and would help to characterize
the extinct ancestors of the eudicot, monocot and magno-
liid clades.

Growing genomic resources in Aristolochiaceae support
further development of a model system
Genomic resources are growing rapidly for Aristolochia-
ceae, which will facilitate the identification and study of
genes, gene families, and gene functions. Presently, over
3.8 million sequence reads from 13 diverse libraries are
publicly available for Aristolochia fimbriata that provide
a deep sampling of expressed gene sequences in this spe-
cies. We anticipate these cDNA sequences, and others
being currently generated, will contribute to new and
ongoing studies of evolution of development in and
comparative genomics with Aristolochia. Comparative
analyses of cDNA sequences within Aristolochiaceae will
be facilitated as well by 10,274 EST sequences from Saruma
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henryi (Figure 4B). Saruma was selected by the Floral
Genome Project (FGP) to represent Aristolochiaceae for
floral transcriptome sequencing (http://www.floralgenome.
org/taxa/) because it appears to display ancestral morpho-
logical characters in the family [53,111,112] and because its
flower includes all four (sepal, petal, stamen, and carpel)
floral whorls.
In addition to EST sequencing, two ongoing efforts

have isolated micro RNAs (miRNAs) and other small
RNAs from A. fimbriata. MiRNAs are small RNAs
(21 nt) that play a major role as regulators of gene ex-
pression in various physiological, cellular, but, mainly de-
velopmental processes [113]. A fimbriata was selected as
one of four basal angiosperms for small RNA sequencing
using SBS/Illumina technology (http://smallrna.udel.edu/
index.php). Our lab has used cloning and capillary se-
quencing as well as 454 pyrosequencing to sequence
miRNAs ([114], unpublished data). This study allowed
the isolation of hundreds of different miRNA sequences
belonging to 32 conserved families as well as several
non-conserved families. Several potential miRNA targets
were found in cDNA sequences of A. fimbriata. Pre-
dicted target genes include transcription factors but also
genes implicated in various metabolic processes and in
stress defense. The isolation of miRNAs from Aris-
tolochia presents a good opportunity for analyzing the
function of miRNAs in basal angiosperms and for under-
standing how miRNA-mediated regulation of gene ex-
pression has evolved in land plants by comparing
miRNAs in basal angiosperms to those in basal eudicots
and lower land plants [115,116].
This core of genetic, genomic, and methodological

resources is presently available as a foundation for fur-
ther development of Aristolochia fimbriata as a basal
angiosperm model system as well as for immediate use
by the scientific community working on various areas of
research including evolution of development, plant re-
sistance to biotic and abiotic stresses, gene functional
analysis, and comparative genomics.

Conclusion
We have used a rigorous process to select and develop
resources for the basal angiosperm, A. fimbriata. Cultur-
ing and hand pollination methods required for rapid
generation of homozygous lines needed for genetic
experiments are described. The small genome size and
immediate availability of sequence data supports future
studies of molecular genetics and evolution. Hypotheses
about gene evolution and gene function can be tested
using a reverse genetic approach, i.e., over and under ex-
pression studies in a transformable species suitable for
large-scale cultivation. The transformation system we
present supports experimental investigation of secondary
metabolites, compounds for which Aristolochia and
other basal angiosperms are well known and which have
long been of interest for their pharmacologic properties
and for their roles in the co-evolution of animals with
plants. Optimizing the selection phase for transformed
A. fimbriata explants would facilitate a high throughput
transformation system for investigating gene function
and evolution in a basal angiosperm. The development
of virally-induced gene silencing (VIGS, [117]) would
provide another valuable tool for functional analysis in
Aristolochia fimbriata. Along with continued develop-
ment of genetic tools and genomic resources, A. fim-
briata has the potential to become an excellent
experimental system to provide further insight into the
developmental, structural, and biochemical diversity
found among basal angiosperms.

Methods
Cultivation
We evaluated 24 species of Aristolochiaceae. These were
selected to encompass the phenotypic plasticity of the
four-whorled, actinomorphic, Saruma, the actinomor-
phic, single-whorled perianths of Asarum and Thottea,
and the bilaterally symmetric, highly modified and di-
verse flowers of Aristolochia. The sampled taxa also
reflected the genetic diversity of the whole family recov-
ered by phylogenetic analysis. Plant material was
obtained from commercial nurseries, private donations,
and academic sources. Vouchers of specimens included
in the phylogenetic analysis and sampled for genome
sizes have been entered into herbaria as described in
Table 4. For these species, we evaluated evolution of
genome size and chromosome number in a phylogenetic
context. For 14 species of Aristolochia we evaluated life
cycle and cultivation characteristics. Plants were main-
tained in the Biology Department greenhouse at The
Pennsylvania State University, University Park, PA. All
seeds were germinated in soil-free potting medium (Pro-
Mix BX, Premier Horticulture Inc., Quakertown, PA) in
shallow germination trays with drainage holes, in the
greenhouse at 18-27°C (varying from night to day) and
40-70% humidity. The trays were incubated on heating
mats operating at approximately 27°C, as needed. Natural
day length was supplemented with high-pressure sodium
lamps (1000 watt) October through April to provide
twelve-hour days. Plants received regular watering as
needed. Depending on the stage of growth, regular
fertilizer applications were provided, as a drench, al-
ternating Peter's Professional 15-16-17 Peat Lite Special
at 200 PPM nitrogen (once to twice weekly) with Peters
Professional 21-7-7 Acid Special (Scotts Horticulture,
Marysville, OH) at 200 PPM nitrogen (approximately
every six weeks). The plants were drenched once a month
with 100 ppm chelated iron (Sprint 330 10% iron, Rose-
Care.com, Santa Barbara, CA).

http://www.floralgenome.org/taxa/
http://www.floralgenome.org/taxa/
http://smallrna.udel.edu/index.php
http://smallrna.udel.edu/index.php


Table 4 Genome sizes, vouchers, sources, and accessions for sequence data used

Taxon Genome size
(pg/2C) +/-std. dev. (n=4)

Std. DNA content of
sample species (Mbp/1C)

Voucher,
herbarium

Source GenBank
Accession

Aristolochia
acuminata Lam.

1.15 +/-0.007 S 564 BJB06.06A,
PAC

Victor Wong (private coll.)

Wanke &
Neinhuis 146,

DR

BG Dresden DQ532063

Aristolochia
anguicida Jacq.

0.81 +/-0.005 S 397 BJB06.03A,
PAC

Mario Blanco (private coll.)

0.89 +/-0.011 436

Wanke &
Neinhuis s.n.,

DR

BG Bonn

Aristolochia
californica Torr.

1.58 +/-0.006 S 774 BJB05.02A,
PAC

Albert J. Hill (private coll.)

1.59 +/-0.011 R 779

Wanke &
Neinhuis 143,

DR

BG Dresden DQ532039

Aristolochia
clematitis L.

0.96 +/-0.001 S 470 BJB03.07A,
PAC

Seneca Hill Perennials, NY

0.99 +/-0.001 485

0.90 +/-0.012 S 441 BJB03.03A,
PAC

BG University Ulm

0.98 +/-0.008 480

W. Stahmüller,
KL

Croatia, Is. Ilovik/Asinello DQ296651

Aristolochia elegans
Mast.

0.81 +/-0.007 S 397 BJB03.02A,
PAC

Park Seed Company, cat. #0179-7

0.81 +/-0.004 397

Aristolochia
fimbriata Cham.

0.91 +/-0.004 S 446 BJB03.04A,
PAC

Larry D. Rosen (“VL”) (private coll.)

0.97 +/-0.004 475

0.96 +/-0.001 S 470 BJB03.05A,
PAC

Russ Strover (“VL”) (private coll.)

0.84 +/-0.009 S 412 BJB04.08A,
PAC

Jardim Botanico, Departamento de
Botanica, (“NV”), Universidade de

Coimbra
0.89 +/-0.004 436

Aristolochia
gigantea Mart. &
Zucc.

0.89 +/-0.013 S 436 BJB03.01A,
PAC

Kartuz Greenhouses, CA JX485569

0.88 +/-0.009 431

Aristolochia
grandiflora Sw.

1.19 +/-0.009 S 583 BJB03.02A,
PAC

Mario Blanco (private coll.)

1.20 +/-0.006 588

1.17 +/-0.008 573

1.21 +/-0.012 593

1.13 +/-0.012 554

1.26 +/-0.006 617

1.20 +/-0.006 R 588

Wanke &
Neinhuis s.n.,

DR

BG Dresden DQ532052

Aristolochia
goldieana (Hook.f.)
Hutch. & Dalz.

4.28 +/-0.113 S 2097 Neinhuis 117,
DR

BG Dresden

Aristolochia
holostylis
(Duchartre) F.
Gonzalez

0.96 +/-0.029 S 470 Neinhuis 116,
DR

BG Dresden DQ532057
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Aristolochia lindneri
Berg.

0.67 +/-0.018 S 328 Neinhuis s.n.,
DR

BG Dresden, Bolivia, San Jose de
Chiquitos

DQ532047

Aristolochia
macrophylla Lam.

1.54 +/-0.011 S 755 BJB04.07A,
PAC

Dawes Arboretum, OH

1.53 +/-0.033 750

1.52 +/-0.025 R 745

1.52 +/-0.018 745

Neinhuis s.n.,
DR

BG Dresden DQ882193

Aristolochia maxima
Jacq

0.77 +/-0.009 S 755 N.Pabon-Mora
& F. Gonzalez,

NY

NYBG

0.78 +/-0.017 R 764

Gonzalez
4018, COL

Panama, Panama DQ532049

Aristolochia. sp. 0.74 +/-0.017 S 363 Wanke &
Neinhuis s.n.,

DR

BG Munich

Aristolochia
passiflorafolia Rich.

0.74 +/-0.006 S 363 BJB06.05A,
PAC

Mario Blanco (private coll.)

Neinhuis s.n.,
DR

Cuba, BG Dresden

Aristolochia
prevenosa F.Muell.

1.83 +/-0.006 S 1793 Neinhuis &
Wanke s.n., DR

BG Dresden, Queensland, Australia,
BG Dresden

Aristolochia
promissa (Mast.)
Keay

4.41 +/-0.013 S 4321 Neinhuis 118,
DR

BG Dresden DQ532065

Aristolochia ringens
Vahl.

0.93 +/-0.004 S 456 BJB06.07A,
PAC

Mario Blanco (private coll.) DQ532055

0.91 +/-0.003 446

Aristolochia
serpentaria L.

1.69 +/-0.024 S 828 BJB03.03A,
PAC

Larry D. Rosen (private coll.)

1.67 +/-0.019 818

1.57 +/-0.018 S 769 BJB05.01A,
PAC

B&T World Seeds

1.56 +/-0.013 764

1.61 +/-0.035 R 789

1.58 +/-0.008 774

Priv. coll. B.
Westlund

USA, Texas, Travis Co. DQ532038

Aristolochia
tomentosa Sims

1.13 +/-0.008 S 554 BJB03.06A,
PAC

Seneca Hill Perennials, NY

1.39 +/-0.010 681

1.40 +/-0.022 S 686 BJB06.01A,
PAC

Dawes Arboretum, OH

1.44 +/-0.011 R 706

Neinhuis 113,
DR

BG Dresden JX485570

Aristolochia triactina
(Hook. f.) Hutch &
Dalz.

4.39 +/-0.059 S 4302 Neinhuis 119,
DR

BG Dresden DQ532066

Aristolochia trilobata
L.

0.91 +/-0.002 S 446 BJB04.04A,
PAC

Kartuz Greenhouses, CA

0.99 +/-0.010 485

1.01 +/-0.002 495

1.02 +/-0.004 R 500

Asarum canadense
L.

10.19 +/-0.040 S 4993 BJB04.03A,
PAC

Joel McNeal, (private coll.)

9.97 +/-0.083 4885

11.04 +/-0.307 5410
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Saruma henryi Oliv. 6.12 +/-0.044 T 2999 BJB06.08A,
PAC

Heronswood Nursery, WA

Neinhuis 120,
DR

BG Dresden DQ532033

Thottea siliquosa
(Lam.) Hou

1.25 +/-0.018 S 613 Neinhuis 121,
DR

India, Kerala, BG Dresden JN415679

Abbreviations: R, Rice (Oryza sativa ssp. japonica cv. ‘Nipponbare’ 0.9 pg/2C); S, Soybean (Glycine max cv. ‘Dunbar’ 2.35 pg/2C), T, Tobacco (Nicotiana tabacum
cv.’SR-1’ 9.15 pg/2C); BG, Botanical Garden; PAC, Pennsylvania State University; DR, Dresden. Mbp DNA for plant species is based on the assumption 1pg=980 Mbp
according to [118]. (BJB indicates first author).
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Genome sizing
Nuclear genome size estimations were obtained by flow
cell cytometry following the protocol described by Aru-
muganathan and Earle [119]. The mean nuclear DNA
content of each plant sample (expressed as pg) was
based on 1000 scanned nuclei from sample tissue, com-
pared to a preparation of tissue from the internal stand-
ard. Each nuclear preparation was sampled four times.
Phylogenetic analysis
To clarify the phylogenetic positions of the taxa sur-
veyed and to evaluate genome size in an evolutionary
context we constructed a phylogenetic tree based on the
plastid trnK intron and matK gene region. Total DNA
was extracted using the CTAB method [120]. Vouchers,
DNA, and tissue samples are stored at PAC. Amplifica-
tion and sequencing was performed following methods
described in detail by Wanke et al. [14] using published
primers [14,18,121]. Sequences were manually aligned
using PhyDEW [122]. Phylogenetic analysis was per-
formed under maximum parsimony in PAUP* 4.0b10
[123] using PAUP scripts written by PRAP [124]. PRAP
was used to implement the Parsimony Ratchet [125] fol-
lowing procedures described in Wanke et al. [14] but
with 1000 ratchet replicates. Bootstrap values were add-
itionally calculated to infer branch support with 1000
replicates. For an independent evaluation of rela-
tionships, a likelihood approach was chosen using the
likelihood ratchet described by Morrison [126] as imple-
mented in PRAP v. 2.0 [124] with default settings. A
phylogram of the single maximum likelihood tree dis-
covered with these methods indicates minimal branch
length variation among the sampled Aristolochia species
(Additional file 1: Phylogram of Aristolochiaceae
relationships).
Pollination experiments
Several species of Aristolochia had been reported to be
self-compatible (A. fimbriata, A. elegans, A. ridicula, A.
ringens) and generally protogynous [42], having a re-
ceptive stigma before the anthers dehisce. To determine if
autogamous pollination could be successful, we attempted
hand pollinations of A. elegans and A. fimbriata on day
one (the day of anthesis), day two, day three, day four and
day five. Unopened flower buds were covered with pollin-
ation bags prior to anthesis and observed daily. Hand
pollination methods are detailed in Additional file 2: Culti-
vation Supplement. Pollinations were accomplished by
severing the perianth midway across the utricle, just above
the gynostemium (Additional file 2: Figure S2A). Pollen
was transferred with a toothpick (Additional file 2: Figure
S2B), and the remnant of the perianth was taped closed
to prevent additional pollinator entry. Mature fruits
(Additional file 2: Figure S2A) were collected and seeds
germinated on wet toweling at 27°C exposed to 16/8 h
day/night cycles.
Genetic transformation
A protocol for genetic transformation of A. fimbriata was
developed based on in vitro shoot regeneration [47] from
leaf and stem explants coupled with Agrobacterium-
mediated transformation. Leaf and internodal stem
segments (2-3 cm long) from rooted tissue cultured A.
fimbriata plants were excised and immediately immersed
in induction media [46] to keep moist. The explants were
inoculated with Agrobacterium strain AGL containing
plasmid pGH00.0131 as previously described for Theo-
broma cacao L. [46]. After the inoculation the explants
were blotted on sterile paper towels and co-cultivated on
callus initiation medium (CI) [47] (0.5 mg/L 6BA, 1 mg/L
NAA and 1mg/L TDZ) for 64 h in the dark at 27°C. Fol-
lowing co-cultivation, the explants were transferred to CI
supplemented with 50 mg/L Geneticin (G418) (Cellgro,
Herndon, VA) and 200 mg/L Claforan (Aventis, New
Jersey) and incubated at 27°C in the dark for the remain-
der of the 14 days. After culture on CI medium, the
explants were transferred to shoot regeneration medium
(1.75 mg/L 6BA and 1.0 mg/L NAA) with 25 mg/L G418
and 200 mg/L Claforan and incubated in the dark for an
additional 14 days. After the 28 days, the cultures were
incubated under dim light until the development of shoot
primordia. Individual glowing shoot primordia were then
excised and transferred to REN2 medium (hormone free)
in culture vessels (Sweetheart DSD8X and LDS58) under
dim light conditions at 27°C [47] where they were main-
tained for further shoot elongation and rooting. EGFP
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fluorescence was observed and recorded as previously
described [46]. Expression of red fluorescent protein in
cells regenerating from transformed calli was independ-
ently observed in experiments by David Tricoli, U. C.
Davis (personal communication).

Genomic PCR analysis
The incorporation of the transgenes was confirmed by gen-
omic PCR. A set of EGFP specific PCR primers were used
for the analysis. The primers amplify a 427 bp EGFP frag-
ment (5’-CCA GGA GCG CAC CAT CTT CT-3’ and 5’-
CTC GTC CAT GCC GAG AGT GA-3’ [46]. Genomic
DNA was isolated from non-transgenic Aristolochia leaf
tissue and from transgenic calli from independent lines
using a CTAB method [120]. Each PCR reaction (final vol-
ume of 20 μl) contained: 5 ng DNA (Qiagen purified DNA
kit #69104), 10 μl JumpStart™ REDTaqW ReadyMix (Sigma
#0982), 5 μls water, forward and reverse primers at final
concentration 0.5 μM. Reactions were prepared on ice.
Control PCR reactions were also performed with 1 ng plas-
mid DNA from vector pGH00.0131 and PCR reaction mix
without DNA. This represents an equal molar amount of
plasmid DNA compared to the EGFP DNA contained in
5 ng total Aristolochia genomic DNA present in the leaf
extract, assuming single copy/insertion of the EGFP gene.
For the plasmid reactions, DNA was isolated using
QIAGEN plasmid midi purification kit (QIAGEN Inc.,
Valencia, CA). PCR conditions for all reactions were: 94°C
for 2 min, then 35 cycles of 94°C for 45 sec., 62°C for 45
sec, 72°C for 1 min. The final cycle was followed by incu-
bation at 72°C for 7 min. 5 μl of each PCR reaction were
loaded onto 1.5% high-resolution agarose gel (Sigma-
Aldrich Co., St. Louis, MO, #A-4718) for electrophoresis.

Expressed sequence EST datasets
To support evolutionary and functional studies in Aristolo-
chia and related taxa, an extensive database of expressed
gene sequences was produced for Aristolochia fimbriata by
the Ancestral Angiosperm Genome Project (http://ancan-
gio.uga.edu/). Seeds of second generation selfed individuals
were germinated in a greenhouse to widely sample plant
organs and developmental stages under standard growth
conditions (see Additional file 2: Cultivation Supplement).
RNAs were isolated using the RNAqueousW-Midi kit
(Ambion, catalog #1911) following the manufacturer’s
protocol (http://tools.invitrogen.com/content/sfs/manuals/
cms_055263.pdf) with modifications as described in
Carlson et al. [127]. Details of library preparation, RNA
and cDNA quality control steps, and Sanger and 454flx se-
quencing will be described elsewhere.
Sequences from individual 454 libraries were extracted

from SFF files and renamed to reflect the source mater-
ial. The names of Sanger sequences also indicated the
source library. After renaming, all sequences were
combined into a single fasta file. All sequences in the
combined fasta file were screened for contaminants and
trimmed using seqclean (http://compbio.dfci.harvard.
edu/tgi/software/) with the Roche library adaptors, the
Piper cenocladum chloroplast genome (NCBI accession
NC_008457), mitochondrial gene sequences from mag-
noliids Calycanthus floridus, Liriodendron tulipifera,
Laurus nobilis, Piper betle and Asarum sp. Qiu 96018,
and the Univec database (http://www.ncbi.nlm.nih.gov/
VecScreen/UniVec.html). After screening and trim-
ming, the 454 and Sanger sequences were assembled
using MIRA version 3.0.5 (http://sourceforge.net/apps/
mediawiki/mira-assembler) [128], with default settings
for EST sequences. The resulting unpadded consensus
sequences (i.e. unigenes) were compared to seven
angiosperm proteomes using blastx. All sequences
and assemblies are available at http://ancangio.uga.
edu/content/aristolochia-fimbriata. Assemblies and blast
results can be viewed through http://ancangio.uga.edu/
ng-genediscovery/aristolochia.jnlp and the assembly can
be searched using the Ancestral Angiosperm Genome
Project blast interface at http://jlmwiki.plantbio.uga.edu/
blast/blast.html.

Additional files

Additional file 1: Phylogram of Aristolochiaceae relationships.
Maximum likelihood analyses showing minimal variation in branch
lengths within Aristolochiaceae. Only one maxium likelihood tree was
found.

Additional file 2: Cultivation Supplement. Description of perianth
maturation, hand pollination methods, and self-compatibility in A.
fimbriata and A. elegans includes: Figure S1 - Aristolochia fimbriata flower
stages. Figure S2 - Hand pollination of A. fimbriata. Table S1 - Evaluating
self-compatibility in Aristolochia fimbriata. Table S2 - Fruit set in
Aristolochia elegans resulting from hand pollination.

Additional file 3: Maximum likelihood analysis of orthologs for
alpha-galactosidase (ATAGAL1; AT5G08380). Blue star indicates a
gene duplication in a common ancestor of angiosperms.

Additional file 4: Maximum likelihood analysis of orthologs for
MYB-domain protein ASYMMETRIC LEAVES 1 (AS1; AT2G37630).
Blue star indicates a gene duplication in a common ancestor of
angiosperms, while the green star indicates a gene duplication in A.
fimbriata.
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