60 research outputs found

    3D-моделирование для жизненного цикла сооружения

    Get PDF
    Owners and construction management are in permanent search to increase competitiveness, reduce cost and time and maintain a high quality of products and services. In this objective project management tend to organize work execution by implementing comprehensive, linked and sequential processes, making full use of every work effort and limiting work duplication and rework. Since the ’90s, the 3D-modeling is used to coordinate, plan, build and manage future structures. The BIM approach proposes to stakeholders to participate in an intelligent centrally shared 3D-model making use of every contribution to this model, facilitating the coordination, solving the interfaces, reducing duplication efforts and carrying the developed data information throughout the life cycle of the structure and beyond the construction phase. Completing a complex structure requires an important level of design management and coordination of the interface between architect, designer, mechanic, electrician, and other designers. Basic input is required from equipment suppliers. Now, for a good reason, everyone in charge of the process is focused on achieving their process with less cost and less time. Thus, he inadvertently reduces the effort associated with surrounding or subsequent actions, and focuses on his main result. For example, structural engineering developing a 3D-model will focus on clean structural design focusing on structural continuity, geometry identification, and calculation model for finite elements of software. Likewise, a mechanical engineer will model plumbing and mechanical networks for fabrication and installation purposes. It is the same with other design disciplines.Собственники и руководители строительства находятся в постоянном процессе повышения конкурентоспособности, сокращения затрат и времени, поддержания высокого качества продукции и услуг. Цель управления проектами – организовать выполнение работ путем реализации комплексных, связанных и последовательных мероприятий, в полной мере использовать ограничения дублирования переделок. С 1990-х годов 3D-моделирование используется для координации, планирования, создания и эксплуатации будущего сооружения. BIM-подход предлагает заинтересованным сторонам участвовать в общей интеллектуальной 3D-модели, облегчая координацию, решая интерфейсы, уменьшая усилия по дублированию и сохраняя информацию о разработанных данных на протяжении всего жизненного цикла конструкции и по завершении этапа строительства. Для выполнения сложной структуры взаимодействия необходимы высокий уровень управления проектированием и координация интерфейса между архитектором, конструктором, механиком, электриком и другими проектировщиками. От поставщиков оборудования требуются основные входные данные. В связи с этим каждый ответственный за процесс нацелен на достижение собственного результата с меньшими затратами и временем исполнения. Тем самым он непреднамеренно сокращает усилия, связанные с сопутствующими действиями, и сосредоточивается на своем основном результате. Например, структурная инженерия, разрабатывающая  3D-модель, будет нацелена на чистый структурный дизайн, ориентируясь на непрерывность конструкции, идентификацию геометрии и модель расчета для конечных элементов программного обеспечения. Точно так же будут моделироваться водопроводные и другие сети для изготовления и монтажа

    Influence of Material Properties on Rate of Resorption of Two Bone Graft Materials after Sinus Lift Using Radiographic Assessment

    Get PDF
    . Purpose. The aim of this study was to investigate the influence of chemical and physical properties of two graft materials on the rate of resorption. Materials and Methods. Direct sinus graft procedure was performed on 22 patients intended for implant placement. Two types of graft materials were used (Bio-Oss and Cerabone) and after 8 months healing time the implants were inserted. Radiographic assessment was performed over the period of four years. Particle size, rate of calcium release, and size and type of crystal structure of each graft were evaluated. Results. The average particle size of Bio-Oss (1 mm) was much smaller compared to Cerabone (2.7 mm). The amount of calcium release due to dissolution of material in water was much higher for Bio-oss compared to Cerabone. X-ray image analysis revealed that Bio-Oss demonstrated significantly higher volumetric loss (33.4 ± 3.1%) of initial graft size compared to Cerabone (23.4 ± 3.6%). The greatest amount of vertical loss of graft material volume was observed after one year of surgery. Conclusion. The chemical and physical properties of bone graft material significantly influence resorption rate of bone graft materials used for sinus augmentation

    Influence of Material Properties on Rate of Resorption of Two Bone Graft Materials after Sinus Lift Using Radiographic Assessment

    Get PDF
    Purpose. The aim of this study was to investigate the influence of chemical and physical properties of two graft materials on the rate of resorption. Materials and Methods. Direct sinus graft procedure was performed on 22 patients intended for implant placement. Two types of graft materials were used (Bio-Oss and Cerabone) and after 8 months healing time the implants were inserted. Radiographic assessment was performed over the period of four years. Particle size, rate of calcium release, and size and type of crystal structure of each graft were evaluated. Results. The average particle size of Bio-Oss (1 mm) was much smaller compared to Cerabone (2.7 mm). The amount of calcium release due to dissolution of material in water was much higher for Bio-oss compared to Cerabone. X-ray image analysis revealed that Bio-Oss demonstrated significantly higher volumetric loss (33.4 ± 3.1%) of initial graft size compared to Cerabone (23.4 ± 3.6%). The greatest amount of vertical loss of graft material volume was observed after one year of surgery. Conclusion. The chemical and physical properties of bone graft material significantly influence resorption rate of bone graft materials used for sinus augmentation

    ANTILEISHMANIAL ACTIVITY OF SOME PLANTS GROWING IN ALGERIA: JUGLANS REGIA, LAWSONIA INERMIS AND SALVIA OFFICINALIS.

    Get PDF
    The current study was undertaken to evaluate in vitro the antileishmanial activity of three plants growing wild in Algeria : Juglans regia, Lawsonia inermis and Salvia officinalis. The hydroalcoholic extracts of these plants were tested on the growth of the promastigotes of Leishmania major. The plant extract effects were compared with three controls : CRL1 composed of 1 ml RPMI inoculated with 106 of promastigotes, CRL2 composed of 1 ml RPMI inoculated with 106 of promastigotes and 100 μl of hydroalcoholic solvent, CRL3 composed of 1 ml RPMI inoculated with 106 of promastigotes and 100 μl of Glucantim as a reference drug in the management of leishmaniasis. The results showed that both J. regia and L. inermis extracts reduced the promastigotes number significantly (

    Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes

    Get PDF
    Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre+/−,iDTR+/− offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre−/−,iDTR+/− mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes

    Maternal Obesity during Gestation Impairs Fatty Acid Oxidation and Mitochondrial SIRT3 Expression in Rat Offspring at Weaning

    Get PDF
    In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD

    Genetic Dissection of Strain Dependent Paraquat-induced Neurodegeneration in the Substantia Nigra Pars Compacta

    Get PDF
    The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different
    corecore