36 research outputs found

    Identification of Lck-derived peptides applicable to anti-cancer vaccine for patients with human leukocyte antigen-A3 supertype alleles

    Get PDF
    The identification of peptide vaccine candidates to date has been focused on human leukocyte antigen (HLA)-A2 and -A24 alleles. In this study, we attempted to identify cytotoxic T lymphocyte (CTL)-directed Lck-derived peptides applicable to HLA-A11+, -A31+, or -A33+ cancer patients, because these HLA-A alleles share binding motifs, designated HLA-A3 supertype alleles, and because the Lck is preferentially expressed in metastatic cancer. Twenty-one Lck-derived peptides were prepared based on the binding motif to the HLA-A3 supertype alleles. They were first screened for their recognisability by immunoglobulin G (IgG) in the plasma of prostate cancer patients, and the selected candidates were subsequently tested for their potential to induce peptide-specific CTLs from peripheral blood mononuclear cells of HLA-A3 supertype+ cancer patients. As a result, four Lck peptides were frequently recognised by IgGs, and three of them – Lck90−99, Lck449−458, and Lck450−458 – efficiently induced peptide-specific and cancer-reactive CTLs. Their cytotoxicity towards cancer cells was mainly ascribed to HLA class I-restricted and peptide-specific CD8+ T cells. These results indicate that these three Lck peptides are applicable to HLA-A3 supertype+ cancer patients, especially those with metastasis. This information could facilitate the development of peptide-based anti-cancer vaccine for patients with alleles other than HLA-A2 and -A24

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy

    A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells

    No full text
    During the last few years, HLA class I tetramers have been successfully used to demonstrate anti-vaccine CD8 CTL proliferation in cancer patients vaccinated with tumor antigens. Frequencies of CTL as low as 10(-6) among CD8 cells were observed even in patients showing tumor regression. Little is known about the role of tumor-antigen-specific CD4 T cells in the context of these anti-vaccine responses. Therefore, we developed a very sensitive approach using fluorescent class-II-peptide multimers to detect antigen-specific CD4 T cells in vaccinated cancer patients. We produced HLA-DP4 multimers loaded with the MAGE-3(243-258) peptide and used them to stain ex vivo PBL from melanoma patients injected with dendritic cells pulsed with several class I and class II tumor antigenic peptides, including the MAGE-3(243-258) peptide. The multimer(+) CD4 T cells were sorted and amplified in clonal conditions; specificity was assessed by their ability to secrete IFN-gamma upon contact with the MAGE-3 antigen. We detected frequencies of about 1 x 10(-6) anti-MAGE-3.DP4 cells among CD4 cells. A detailed analysis of one patient showed an anti-MAGE-3.DP4 CD4 T cell amplification of at least 3000-fold upon immunization. TCR analysis of the clones from this patient demonstrated a polyclonal response against the MAGE-3 peptide

    Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    Get PDF
    Cancer cells` growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells` recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A* 0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A*0201-restricted Melan-A/MART-1(27-35) or gp100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferonregulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL

    Immunodominant CD4(+) responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant

    No full text
    There is increasing evidence showing the involvement of CD4(+) T cells in initiating and maintaining antitumor immune responses. NY-ESO-1 is expressed by various tumors but not normal tissues except testis. We conducted a cancer clinical trial by using full-length NY-ESO-1 protein formulated with ISCOMATRIX adjuvant and injected into patients intramuscularly. Autologous dendritic cells pulsed with NY-ESO-1 ISCOMATRIX in combination with overlapping synthetic peptides were used to identify immunodominant T cells from a vaccinated patient. We show here the identification and characterization of two novel CD4(+) T cell epitopes. T cells specific to these epitopes not only recognized autologous dendritic cells loaded with NY-ESO-1 but also NY-ESO-1-expressing tumor cell lines treated with IFN-γ. One of the two responses identified was greater than the previously identified immunodominant HLA-DP4-restricted response and correlated with NY-ESO-1-specific CD8(+) T cell induction after vaccination. This T cell response was vaccinated in most patients who expressed HLA-DR2. This study has systematically surveyed patients vaccinated with full-length tumor antigen for a vaccinated CD4 helper T cell response

    Immune characterization of clinical grade-dendritic cells generated from cancer patients and genetically modified by an ALVAC vector carrying MAGE minigenes.

    No full text
    Gene delivery into dendritic cells (DC) is most efficiently achieved by viral vectors. Recombinant canarypox viruses (ALVAC) were validated safe and efficient in humans. We aimed firstly to evaluate DC transduction by ALVAC vectors, then to investigate if such infection induced or not the maturation of the DC, and finally to assess the efficiency of ALVAC-MAGE-transduced DC to activate specific CTL clones. Clinical grade DC from melanoma patients were generated from blood monocytes and infected with a recombinant ALVAC virus encoding either a marker gene (EGFP) or the MAGE-1-MAGE-3 minigenes. According to the patient-donor, 22+/-16% of immature DC were successfully transduced. Flow cytometry analysis of surface markers expressed on DC after ALVAC infection did not reveal a mature phenotype. Moreover, ALVAC transduction did not interfere with the capacity of the DC to further mature under poly:IC stimulation. But most importantly, our results demonstrated that DC from HLA-A1 patient-donors infected with the recombinant ALVAC MAGE-1-MAGE-3 minigenes virus were capable of activating a MAGE 3/A1 CTL clone more efficiently than same DC loaded with MAGE 3/A1 peptide, as shown by increased IFN-gamma secretion. These results could be the basis for the development of a new clinical strategy in melanoma patient's immunotherapy.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore