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Opinion
Glossary

Bioreactors: devices supporting biologically active environments in vitro. They

are used to culture cells and tissues in static or dynamic conditions.

Brisk/non-brisk tumor infiltration by lymphocytes: tumor infiltration by

lymphocytes is characterized as ‘brisk’ when TILs are diffused within the

tumor, whereas the ‘non brisk’ TIL infiltration is discontinuous and largely

limited to the periphery of the tumor.

Chemokines: families of small proteins inducing direct chemotaxis in

responsive cells.

Cytokines: signaling proteins of critical relevance for intercellular communica-

tion and functions in innate and adaptive immune responses.

Cytotoxic T lymphocytes (CTLs): subgroups of T lymphocytes capable of killing

allogenic, virus-infected or tumor cells upon HLA class I restricted recognition

of specific antigens.

Delayed-type hypersensitivity (DTH) reactions: skin lesions predominantly

mediated by T cells appearing within 24 to 72 h after intradermal injection of a

previously experienced antigen.

Immunological pressure: immune responses specific for antigen(s) expressed

by given cells leading to the preferential survival of cell subsets failing to

express or present target molecules.

Scaffold: a typically porous, 3D cell culture substrate, which provides the

template for cell organization into tissue structures.

Spheroid: a micromass cell culture model, typically achieved by preventing cell

adhesion to the culture substrate and thereby promoting cell condensation.

Tumor-associated antigens (TAAs): antigens expressed predominantly or

exclusively by tumor cells recognized by T cells or antibodies.

Tumor escape: capacity of tumor cells to avoid elimination by the immune

system.

Tumor-initiating cells: cancer cell subsets capable of reproducing the

heterogeneity of the original tumor specimen upon engraftment in immuno-

deficient mice.
Experimental models indicate that tumor cells in suspen-
sion, unlike solid tumor fragments, might be unable to
produce life-threatening cancer outgrowth when trans-
ferred to animal models, irrespective of the number of
cells transferred, although they induce specific immune
responses. Human tumor cells cultured in three dimen-
sions display increased pro-angiogenic capacities and
resistance to interferons, chemotherapeutic agents or
irradiation, as compared with cells cultured in two-
dimensional (2D) monolayers. Tumor cells cultured in
three dimensions were also shown to be characterized
by defective immune recognition by cytotoxic T lympho-
cytes (CTLs) specific for tumor-associated antigens
(TAAs) and by a capacity to inhibit CTL proliferation
and dendritic cell (DC) functions. Downregulation of
human leukocyte antigen (HLA) or TAA expression
and high production of lactic acid might play a role in
the elicitation of these effects. Here, we propose that
growth in 3D architectures might provide new insights
into tumor immunology and could represent an integral
missing component in pathophysiological tumor
immune escape mechanisms.

Active antigen-specific tumor immunotherapy trials: a
discrepancy between immunological and clinical
responses
Large numbers of tumor-associated antigens (TAAs) have
been identified during the past decade [1], providing the
rationale for the development of vaccination protocols
targeting a variety of cancers and resulting in many
clinical trials [2–6].

A common finding during these studies has been that
TAA-specific immune responses, which are detectable by
diverse phenotypic and/or functional ex vivo or in vitro
assays or by skin tests [e.g. delayed-type hypersensitivity
(DTH) reactions (see Glossary)], can be generated rela-
tively easily upon vaccination. Clinical responses, how-
ever, were only observed in a fraction of the cases where
successful immunization could be documented. Notably, no
assay developed so far for the monitoring of clinical trials
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has allowed prognostic predictions regarding the clinical
effectiveness of the immune responses induced by thera-
peutic anti-TAA immunization [7–9].

Even cytotoxicity assays that, unlikemultimer staining,
Elispot or cytokine gene expression tests, exquisitely
address the ultimately desired functional immune
response, fail to unequivocally correlate with a favorable
clinical outcome. More frequently, lack of immune respon-
siveness, as detected by these assays, is found to be corre-
lated with unfavorable clinical course [10,11].

Remarkably, 51Cr release assays, frequently used in
cytotoxic T lymphocyte (CTL) screening or in the
monitoring of clinical trials, are mostly performed by
using target cell lines of disparate origin that express
Warburg phenomenon: capacity of tumor cells to perform aerobic glycolysis

leading to high lactate production.
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defined MHC determinants after loading with specific
peptides. TAA recognition might eventually be confirmed
by the killing of tumor cell lines of a specific histological
origin expressing adequate HLA alleles and TAA. In
classic experimental settings, effector and target cells
are co-cultured in U- or V-bottom well trays and cells are
brought into close contact with each other for optimal
elicitation of cytotoxic activity. Critical aspects of the
lymphocyte–cancer cell interaction obviously fail to be
addressed by these techniques.

Notably, well-defined murine models indicate that
single-tumor-cell suspensions are highly effective in indu-
cing protective CTL responses that prevent their in vivo
outgrowth [12,13]. By contrast, solid fragments containing
similar numbers of cancer cells are largely unable to
stimulate an immune response [12] and display vigorous
in vivo proliferation. These effects were mainly attributed
to immune ignorance due to the fact that tumor cells from
tissue fragments might fail to reach secondary lymphoid
organs [12]. Nevertheless, these studies suggest that
growth of tumor cells in three dimensional (3D) structures
rather than in single-cell suspensions favors cancer de-
velopment when the cells are transferred to in vivomodels.

Taken together, these data suggest that the develop-
ment of 3D culture systems has the potential to allow
controlled evaluation of the molecular mechanisms under-
lying these phenomena.

Tumor escape mechanisms
Tumor escape from immune recognition represents the
subject of an active research effort from a large community
of scientists.

Downregulation or loss of HLA expression limited to
single alleles or involving all of them has been demon-
strated in different types of tumors [14]. In several cases,
underlying molecular defects, including mutations in
genes encoding HLA subunits, have been documented.
Furthermore, expression of components of the antigen-
presentation machinery has also been shown to be affected
[15]. By contrast, loss or downregulation of TAA expres-
sion, in particular after successful specific immunization,
have also been reported [16,17].

These alterations might result from the selection of
resistant variants in cancer cell populations after appli-
cation of immunological pressure. However, the in vivo
relevance of these mechanisms is debated [18].

Several more recent studies highlight that ex vivo-
sampled TAA-specific T cells from tumormetastases might
be quiescent [19–22] and functionally impaired. In particu-
lar, they appear to be unable to produce interferon (IFN)-g
after T-cell-receptor engagement. Remarkably, these
impairments are reversible, and short courses of in vitro
stimulation with cytokines result in the restoration of
these functional capacities, even before the induction of
proliferation [20,21,23]. It is of note that, in at least one of
the studies cited above, Melan-A/MART-1-specific, ex vivo-
sampled CTLs from the peripheral blood of melanoma
patients were shown to be able to respond with IFN-g
production upon peptide-specific stimulation, whereas
CD8+ cells with the same specificity frommetastatic lymph
nodes or nonlymphoid metastases were unresponsive [21].
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These studies are reminiscent of previous studies that
suggested that, in tumor samples largely infiltrated by T
cells displaying an HLA-DR+ ‘activated’ phenotype, the
expression of genes typically transcribed upon antigen
recognition, such as those encoding IFN-g or tumor necro-
sis factor (TNF)-a, is infrequently detectable [24,25]. How-
ever, functional unresponsiveness of peripheral blood
TAA-specific T cells has also been reported in patients
bearing tumors and in experimental models [26,27]. The
role of the tumor cells in the elicitation of these effects has
not been fully clarified. Transforming growth factor (TGF)-
b produced by cancer cells or tumor-associated interstitial
cells has been suggested to have a role in the induction of
TAA immune tolerance [28]. Alternative mechanisms
might be related to the interaction of programmed
death-1 (PD-1; CD279) expressed on activated lympho-
cytes with specific ligands expressed on tumor cells [29].
Exhaustion of CTLs might also result from repetitive
exposure to high amounts of specific antigens. Tolerance
of TAAsmight also derive from the expansion of regulatory
CD4+/CD25+/FOXP3+ T cells or from the conversion of
CD4+/CD25+/FOXP3-activated T cells into regulatory T
cells. Either event might be mediated by TGF-b or by
indoleamine 2,3 dioxygenase (IDO), a tryptophan-metabo-
lizing enzyme [30]. A role for interleukin (IL)-10 could also
be hypothesized [31].

Taken together these data powerfully emphasize the
complexity of the interaction between tumor cells and the
immune system. Clearly, mechanistic studies cannot be
addressed in sufficient detail in humans by using conven-
tional culture methods, thereby urging the development of
models possibly linking experimental in vivo models,
clinical observations and controlled in vitro culture technol-
ogies.

Three-dimensional cell-culture models
3D culture models have widely been used across the past
two decades with the aim of mimicking the in vivo behavior
of normal or transformed cells in conditions better amen-
able to experimental investigation [32]. 3D cultures of
tumor cells have been obtained by promoting the aggrega-
tion of cells in spheroids via several different methods or by
using scaffolds [33].

The liquid-overlay technique requires the culture of
trypsinized cell suspensions in dishes coated with a thin
layer of agarose. Alternatively, bacterial-grade plastic cul-
ture dishes or cell-culture-grade plasticware treated with
poly-2-hydroxyethyl methacrylate (polyHEMA) can also be
used [34]. Single cells placed on these surfaces do not
adhere, yet they proliferate, and for many human cell
lines, small colonies of aggregated cells can form within
1 to 3 days.

Cells can also be placed in spinner flasks and stirred to
inhibit adhesion to the plastic and to maintain them in
suspension. In temperature-controlled bioreactors and in
the presence of carefully adjusted amounts of media,
homotypic aggregation and subsequent formation of
spheroids can take place over time. Rotating wall vessel
(RWV) bioreactors have also been used to spin cell clusters
while preventing them from settling at the bottom of the
vessel [35].



Table 1. Main differences in biological functions between tumor
cells cultured in three dimensions or in monolayers

Biological function Changes in 3D as

compared to 2D

cultures

Refs

Metabolic profiles Modified [48,50–52]

Production of lactic acid Increased [50–52]

Proliferation capacity Decreased [46,47,54,74]

Sensitivity to IFN,

drugs, irradiation or

apoptosis induced

by death receptor ligation

Decreased [45,48,57,59]

Expression of HLA class I Decreased in

defined cell lines

[51,73,74]

Expression of melanoma

differentiation TAA

Decreased in cells

included in

spheroids with high

cell numbers

[51,74]

Expression of HSP70 Decreased [73]

Polarity and shape of cells Modified Reviewed in [53]

Gene expression profiles Modified [40,54,72,74]

Reviewed in [53]
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Alginic acid is a 1,4-linked (homopolymeric or hetero-
polymeric) copolymer of b-d-mannuronic acid and a-l-glu-
curonic acid. This reagent is not toxic, and its gelling
process is thermo-independent [36]. Cells are suspended
in water-soluble sodium alginate gel at room temperature,
and gelification can be provoked by dropping in ions such
as Ca2+, Ba2+ or Fe3+ in aqueous solution. Alternatively,
tumor cells have been embedded in gels (e.g. Matrigel)
composed of basement membrane or laminin-rich extra-
cellular matrix (ECM) proteins [37,38].

Solid stress can also facilitate spheroid formation,
especially for highly metastatic cancer cell lines.
Growth-inhibiting stress in the range of 45 to 120 mmHg
can increase ECM (hyaluronan) synthesis by tumor cells
[39].

More recently, Fischbach et al. reported the possibility
of engineering 3D tumor structures by using highly
porous scaffolds fabricated from poly(lactide-co-glyco-
lide) [40]. This method offers the opportunity to inves-
tigate the role of specific environmental cues, which can
be engineered into the scaffold design. Clearly, the com-
plexity of the system is increased, and the biological
readouts of the cultures might critically depend on a
large number of factors, including scaffold composition
(e.g. synthetic or naturally occurring polymer), material
surface properties (e.g. wettability, rugosity) and pore
architecture (e.g. pore size, interconnectivity, surface
area).

These reports highlight the ongoing efforts aimed at the
generation of improved 3D culture models amenable to
detailed cellular and molecular biology studies.

Features of tumor cells cultured in 3D structures
3D cultures have been used for a long time to study
morphogenesis and tissue formation in vitro in conditions
better controlled than in vivo models. More recently, these
methods have also been applied to the analysis of malig-
nant transformation and tumor progression. In particular,
in regard to breast cancer, the invasion of the glandular
lumen, a typical feature detectable in the initial phases of
the development of these tumors, has been successfully
reproduced in vitro, and its mechanisms have been
explored in detail thanks to the use of 3D cultures [41–44].

Cancer cells cultured in three dimensions are charac-
terized by several peculiar features differentiating them
from monolayer cultures (Table 1) and paralleling those of
in vivo tumors. In particular, early events of tumor growth
before effective vascularization appear to be closely repro-
duced. Indeed, within a short timeframe, 3D cultures of
tumor cells develop hollow cores that resemble the necrotic
areas of in vivo cancers: areas that are usually observed at
a distance from nutrient and oxygen supplies. In addition,
the proliferation of tumor cells cultured in three dimen-
sions is typically slower than that of monolayer cultures
[45]. This dynamic fits the Gompertz equation, an algor-
ithm used to quantitatively evaluate in vivo neoplastic
growth [46,47].

Most importantly, it has been shown that tumor cells
cultured in three dimensions display different metabolic
characteristics compared to those of their 2D counterparts
[48]. A predominant feature appears to be represented by
increased glycolysis, leading to relatively high lactic acid
production [49–52].

Tumor cells of epithelial origin cultured in three dimen-
sions have also been shown to change shape and lose
polarity, a feature typically associated with tumor pro-
gression in vivo (reviewed in [53]).

Importantly, gene-expression profiles of cells cultured
in three dimensions are different from those of the same
cells cultured inmonolayers, as observed in studies addres-
sing small series of transcripts or based on oligonucleotide
chip hybridization [40,54,55]. Genes encoding several che-
mokines, such as IL-8, or factors playing a role in angio-
genesis, including angiopoietin like 4, hypoxia-inducible
protein 2 and vascular endothelial growth factor (VEGF) 1
and 2, have been found to be upregulated in tumor cells
cultured in 3D architectures, recalling observations made
in clinical tumor specimens [40,54,55] (Figure 1).

Compared to tumor cells cultured in two dimensions,
cells cultured in three dimensions display a decreased
sensitivity to apoptosis induced by radio-chemo treatments
or by death receptor ligation [56]. Similarly, sensitivity to
the cytostatic or cytotoxic effects of interferons or che-
motherapeutic agents is significantly reduced in cells cul-
tured in three dimensions [40,45,57,58]. Interestingly, the
Fas ligand (FasL) gene has been found to be expressed in
HRT-18 and CX-2 colorectal cancer cell lines cultured in
multicellular tumor spheroids (MCTS) but not in the same
cell lines cultured in two dimensions [59].

Culture of tumor cells in 3D scaffolds has also been
addressed more recently (see ‘Three-dimensional cell-cul-
ture models’ above). Cells cultured in these conditions
display features largely overlapping with those of cells
cultured in spheroids, including higher production of
pro-angiogenic factors and resistance to treatment with
chemotherapeutic agents [40].

An important advantage of 3D cultures is that the
interaction of different cell types can be explored. For
instance, infiltration of tumor spheroids by endothelial
cells has been demonstrated; it depends not only on the
production of pro-angiogenic factors by tumor cells but also
on the expression of cadherins by endothelial cells [55].
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Figure 1. Features of tumor cells cultured in three dimensions. Culture of tumor cells in three dimensions rapidly results in the formation of hollow necrotic cores (a).

Whereas cells in outer layers do actively proliferate, cells in inner layers are mostly quiescent (b). The expression of genes encoding hypoxia-related factors, including

VEGF, hypoxia-inducible protein 2 (HIG2), angiopoietin-like 4 (ANGPTL4) and IL-8, is typically enhanced in tumor spheroids, as compared to monolayers. Furthermore,

glycolysis with enhanced production of lactic acid is also promoted.
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These data show that 3D cultures can mimic defined
aspects of in vivo tumors and that models of increasing
complexity currently under development might help to
increase their resemblance to clinical cancers.

Cancer stem cells and growth in 3D structures
Tumor-initiating cells, the so-called ‘cancer stem cells’ that
are capable of transplanting malignancies in immunocom-
promised hosts, have been characterized in different types
of malignancies in the recent past [60]. Their phenotypic
profiles have not been fully clarified. For instance, mela-
noma stem cells were initially described as CD20+ cells
[61]. Other studies, however, have emphasized the role of
CD133+ cells [62] and, in particular, of their ABCG2+

subset [63]. Cancer stem cells from different tumors appear
to share common features, including a state of relative
quiescence and a self-renewal capacity in the context of
preferentially asymmetric divisions [64]. Furthermore,
they are deemed to be highly resistant to chemotherapeu-
tic treatments or irradiation, possibly due to their high
DNA repair capacity and to the expression of ATP-binding
cassette transporters [65].

Intriguingly, a common tumor-stem-cell characteristic,
which has been observed in cells isolated from several
human tumors, is represented by their preference to grow
in spheroid-like structures in vitro [61,66–69]. The mol-
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ecular background underlying this phenomenon is unclear,
but it is possibly related to prevention of adherence caused
by loss of polarity or defective interaction with defined
ECM components in culture conditions [41,43]. Indeed,
culture of embryonic stem cells in two dimensions instead
of in embryonic bodies has been reported to favor their
differentiation [70]. Notably, different matrices have also
been shown to promote maintenance or differentiation of
stem cells [53,71]. Future studies are needed to investigate
whether culture of heterogeneous populations of tumor
cells in 3D structures might favor a relative expansion
of cells characterized by stem-cell-like features.

Immune responsiveness to tumor cells growing in 3D
structures
There is a curious paucity of studies on immune respon-
siveness to tumor cells cultured in 3D architectures in
humans. However, the few published reports unanimously
indicate that, in these conditions, cancer cells are poorly
recognized by specific CTLs or that theymight even be able
to actively inhibit key functions underlying the induction of
specific responsiveness. Interestingly, these data were
obtained by using tumor cell lines of different histological
origin, including melanoma, bladder and lung cancers.

In particular, it has been shown that tumor-infiltrating
lymphocytes (TILs) of undefined antigenic specificity, but



Figure 2. Molecular mechanisms potentially underlying defective responsiveness of tumor-associated antigen (TAA)-specific CTLs to tumor cells cultured in three

dimensions. Modulation of the expression of HLA class I molecules has been observed in tumor cells cultured in three dimensions. Furthermore decreased expression of

HSP70 molecular chaperone has also been detected. In spheroids including large numbers of tumor cells (>5 000), expression of melanoma-associated differentiation TAA

has been found to be significantly decreased. These events might account for an impaired immune recognition of tumor cells by TAA-specific CTLs. Conversely, the

increased production of lactic acid typically displayed by tumor cells cultured in three dimensions has been shown to be responsible for defective differentiation of

monocytes towards dendritic cells and for an impaired capacity of CTLs to proliferate and produce IFN-g and cytotoxicity mediators upon T-cell-receptor triggering. A

combination of these mechanisms might favor tumor escape from immune response.
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able to effectively elicit cytotoxic activity against autolo-
gous bladder tumor cells cultured in two dimensions or in
suspension, failed to recognize targets cultured in multi-
cellular spheroids [72].

Similarly a CTL clone specific for an HLA-A0201
restricted, mutated a-actinin-4 peptide expressed by au-
tologous lung cancer cells poorly recognized targets grow-
ing in three dimensions [73]. The authors suggested a
downregulation of heat shock protein 70 (HSP70) expres-
sion in spheroids as a possible underlying mechanism.

Our group and others have reported data indicating that
melanoma cell lines expressing Melan-A/MART-1 and
gp100 are also defectively recognized by CTL clones and
lines specific for the HLA-A0201 restricted peptides 26–35
and 280–288, respectively, if cultured in three dimensions,
as opposed to monolayers [51,52,74]. Target cells in three
dimensions poorly induce IFN-g secretion and expression
of the genes encoding Fas ligand, perforin or granzymeB in
TAA-specific effector cells, as compared to targets cultured
in monolayers or in suspension.

Interestingly, these TAA-specific CTL clones also fail to
infiltrate melanoma spheroids, but rather tend to remain
on their surface, resembling the ‘non-brisk’ T-cell infiltra-
tion described in clinical specimens [75].
A multiplicity of mechanisms has been proposed
(Figure 2). First, spheroids might provide structural hin-
drances to CTL attack by limiting the accessible surface of
the target cell. However, subtler events could also be
involved. Indeed, the expression of melanoma-associated
differentiation antigens has been shown to be downregu-
lated in tumor cells cultured in high densities [76], possibly
owing to ‘antigen silencing’ by oncostatinM (OSM) [77].We
have observed that Melan-A/MART-1 and gp100 gene
expression is decreased in melanoma cells cultured in
three dimensions and, in particular, in spheroids contain-
ing high numbers (>5 000) of tumor cells. In these con-
ditions, a downregulation of HLA class I expression,
accompanied by decreased expression of at least one gene
encoding a specific transcription factor [interferon regulat-
ory factor-1 (IRF-1)], has also been detected in two out of
three melanoma cell lines under investigation [51]. Thus,
downregulation of the expression of TAA and HLA class I
are detectable in tumor cells cultured in three dimensions
in the absence of exogenously applied immunological pres-
sure.

Most intriguingly, specific metabolic features of tumor
cells cultured in three dimensions might play a peculiar
role in the inhibition of TAA-specific CTL response. Lactic
337



Box 1. Outstanding questions

� To what extent is the sensitivity of tumor cells to the cytotoxic

effects of defined TAA-specific CTL clones in three dimensions

predictive of in vivo effectiveness?

� Could 3D culture models be of use in the preclinical evaluation of

combination treatments involving the use of TAA-specific T cells

and cytokines, monoclonal antibodies or chemotherapeutic

agents?

� Is it possible to construct improved 3D culture models that include

different cell types other than tumor cells and that take advantage

of dynamic perfusion in bioreactors?

� Could 3D culture favor the survival or the expansion of cancer

stem cells from solid tumors, and could it help to investigate

which other types of untransformed cells represent necessary

components of the stem cell niche?
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acid, which is known to be produced in greater amounts by
tumor cells cultured in spheroids than by those cultured in
2D architectures, has been shown to suppress proliferation
and cytokine production capacity of human CTL while
markedly inhibiting their cytotoxic activity [52]. Notably,
concentrations of lactic acid similar to those produced by
melanoma spheroids (10–20 mM) do impair the production
of IFN-g by specific CTLs induced by HLA-A0201+ Melan-
A/MART-1+ cells cultured in two dimensions [50–52].
These effects might be related to the enhanced glucose
requirements of activated CTLs, the metabolism of which
might be hindered by high extracellular concentrations of
lactic acid [78]. The same concentrations have also been
shown to affect the differentiation of monocytes towards
dendritic cells (DCs) [50]. These findings assume a peculiar
relevance because fluorodeoxyglucose (FdG) positron emis-
sion tomography (PET) has demonstrated altered glucose
metabolism in vivo in a large majority of primary and
metastatic cancers [79,80].

Taken together, these data suggest that antigen recog-
nition capacity and the resulting functional activities of
CTLs might be significantly altered in the presence of
tumor cells growing in multilayered architectures.

Concluding remarks
Immunology of human tumors is mostly based on in vitro
models. Their use has led to substantial advances in our
understanding of the molecular nature of TAAs [1].
Furthermore, they have led to the development of a wealth
of immunogenic reagents and vaccination procedures and
to the establishment of highly sensitive monitoring tech-
nologies. However, the discrepancy between T-cell-
mediated antitumor immunity and the relatively poor
clinical results of TAA-specific vaccination urges an updat-
ing of conventional in vitro models.

Data obtained by different groups, including ours,
suggest that mere culture of cancer cells in three dimen-
sions might result in downregulation of the expression of
HLA class I and TAA and in an increased production of
lactic acid compared to conventional 2D cultures [50–
52,72–74]. Most importantly, combinations of these fea-
tures have been detected in cancers in vivo [15,49]. These
events are likely to impact on several essential steps
required for the elicitation of effective immune responses,
ranging between maturation of antigen-presenting cells
(APCs), antigen presentation and recognition and the
implementation of effector functions. Thus, results from
highly controlled 3Dmodels in vitro suggest that structural
characteristics of tumor growth and of the resulting micro-
environmentmight play an important role in belittling and
defusing natural or vaccine-induced TAA-specific CTL
responses, potentially limiting their clinical efficacy.

Indeed, adoptive immunotherapy protocols have pro-
vided proof of principle of the possibility of treating solid
tumors by administration of high numbers of TAA-specific
CTLs [81,82], thereby indicating that they are accessible to
effector lymphocytes and potentially sensitive to their
activities. However, clinical responses of variable extent
are detectable in a fraction of patients treated in different
studies [82–85], and they are frequently unrelated to the
numbers of TAA-specific CTLs transferred to patients
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[84,85]. Even upon transfer of lymphocytes genetically
engineered to express T-cell receptors specific for mela-
nomaTAAs, resulting in engraftment levels exceeding 10%
of peripheral blood lymphocytes, partial clinical responses
were detectable in two out of 17 patients treated [86].
Altogether, these data indicate that local conditions might
affect the interaction between tumor cells and effector
lymphocytes, and such conditions should be investigated
in future studies.

Most obviously, 3D cultures fail to thoroughly reproduce
the enormous complexity of tumor cell biology in vivo.
Thus, it is unlikely that they will ever be able to replace
experimental in vivo models in the analysis of the molecu-
lar mechanisms underlying tumor escape from immune
response. Conversely, they highlight the relevance of struc-
tural features in undermining the effectiveness of TAA-
specific immune responses, and they might emerge as an
important tool for investigating, in highly controlled con-
ditions, themolecular mechanisms regulating the relation-
ship between cancer and immune effectors.

Several outstanding questions deserve to be addressed
(Box 1). Most interestingly, could culture in three dimen-
sions favor the survival or the expansion of cancer stem
cells from solid tumors? Could 3D models be of use in the
identification of other types of untransformed cells repre-
senting necessary components of the stem cell niche?

A common experience in clinical immunotherapy is that
patients with relatively high tumor burdens infrequently
benefit from TAA-specific immunization. Clearly, several
different mechanisms concur in the determination of this
outcome. The architecture of tumor tissues might
represent one of them. Far from being discouraged, tumor
immunologists might rather redirect their efforts to the
treatment of patients rendered clinically tumor-free and/or
to combination therapies also addressing tumor microen-
vironment.
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