287 research outputs found

    The topology of systems of hyperspaces determined by dimension functions

    Get PDF
    Given a non-degenerate Peano continuum XX, a dimension function D:2βˆ—Xβ†’[0,∞]D:2^X_*\to[0,\infty] defined on the family 2βˆ—X2^X_* of compact subsets of XX, and a subset Ξ“βŠ‚[0,∞)\Gamma\subset[0,\infty), we recognize the topological structure of the system (2^X,\D_{\le\gamma}(X))_{\alpha\in\Gamma}, where 2X2^X is the hyperspace of non-empty compact subsets of XX and D≀γ(X)D_{\le\gamma}(X) is the subspace of 2X2^X, consisting of non-empty compact subsets KβŠ‚XK\subset X with D(K)≀γD(K)\le\gamma.Comment: 12 page

    Renormalized spectral function for Co adatom on the Pt(111) surface

    Full text link
    The strong Coulomb correlations effects in the electronic structure of magnetic Co adatom on the Pt(111) surface have been investigated. Using a realistic five d-orbital impurity Anderson model at low temperatures with parameters determined from first-principles calculations we found a striking change of the electronic structure in comparison with the LDA results. The spectral function calculated with full rotationally invariant Coulomb interaction is in good agreement with the quasiparticle region of the STM conductance spectrum. Using the calculated spin-spin correlation functions we have analyzed the formation of the magnetic moments of the Co impurity orbitals.Comment: 4 pages, 4 figure

    Spatial inversion of gyrotropy parameter in conductivity tensor and charge transport peculiarities

    Get PDF
    Charge transfer is discussed for the case when gyrotropy parameter (Hall coefficient) varies along transport Π»-direction and inverses its sign. This situation takes place in contacts of the serially joined materials having electron and hole types of conductivity. Spatial inhomogeneity of conductivity and inversion of Hall coefficient sign are analyzed in terms of electric potential and current density distribution. It is shown that under inhomogeneous magnetic field the steady current skinning takes place in plate sample

    Grain yield response of facultative and winter triticale for late autumn sowing in different weather conditions

    Get PDF
    Climate change is affecting the growing conditions of winter cereals. Peculiarities of organogenesis and their impact in grain yield of facultative triticale depend on different nitrogen fertilization can help to avoid adverse effects of unfavorable conditions. Field experiment was conducted in zone of the Right-Bank Forest-Steppe of Ukraine. The experiment included 2 late autumns sowing periods and fertilization system with few variants of nitrogen fertilization applied in spring. Features of organogenesis of two winter varieties and facultative triticale Pidzimok kharkivskiy were determined by apical meristem microscopy from emergence till heading. Was established process of apical meristem differentiation in facultative triticale has non-linear relation between temperature and number of spikelets. The efficiency of apical meristem differentiation reaches its maximum at 12 Β°C. Grain yield of triticale varieties depend on studied factors but main impact had weather conditions. Grain yield of facultative triticale significantly exceeds winter varieties and had a lesser difference between sowing period than winter cultivars. Crops in the first sowing period were more productive than in the second. Facultative triticale has great productivity potential in late autumn sowing and can realize it in various conditions. Reduced yields in late sowing are lower than in winter cultivars

    Nanoskyrmion engineering with spsp-electron materials: Sn monolayer on SiC(0001) surface

    Get PDF
    Materials with spsp-magnetism demonstrate strongly nonlocal Coulomb interactions, which opens a way to probe correlations in the regimes not achievable in transition metal compounds. By the example of Sn monolayer on SiC(0001) surface, we show that such systems exhibit unusual but intriguing magnetic properties at the nanoscale. Physically, this is attributed to the presence of a significant ferromagnetic coupling, the so-called direct exchange, which fully compensates ubiquitous antiferromagnetic interactions of the superexchange origin. Having a nonlocal nature, the direct exchange was previously ignored because it cannot be captured within the conventional density functional methods and significantly challenges ground state models earlier proposed for Sn/SiC(0001). Furthermore, heavy adatoms induce strong spin-orbit coupling, which leads to a highly anisotropic form of the spin Hamiltonian, in which the Dzyaloshinskii-Moriya interaction is dominant. The latter is suggested to be responsible for the formation of a nanoskyrmion state at realistic magnetic fields and temperatures.Comment: 4 pages, supplemental materia

    ГСнСтичСскиС особСнности ΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΊΠΎΠΆΠΈ

    Get PDF
    Melanoma remains the most deadly form of malignant skin disease with high risk of metastases. Metastatic melanoma is prognostic highlyΒ unfavorable and resistant to traditional chemotherapy and biologic treatment. There is a great progress in understanding of the molecularΒ mechanisms underlying melanoma initiation and progression. The external (ultraviolet irradiation) and internal (genetic) factors are involvedΒ in melanoma genesis. 5–14 % of melanoma cases occur in familial context due to genetic predisposition risk factors. Among them rareΒ germinal mutations in the cell cycle genes regulators CDKN2A and CDK4 and in the master gene of melanocyte homeostasis MITF, as wellΒ as single nucleotide polymorphisms of several low-penetrated genes, namely MC1R, have been identified. The main cell signaling pathwaysΒ and oncogene driver mutations are involved in melanoma pathogenesis. RAS / RAF / MEK / ERK cascade is hyperactivated in 75 % of cutaneousΒ melanoma cases. Activation of PI3K / AKT / mTOR signaling pathway is important for melanoma progression. Recent studies revealedΒ that melanomas are genetically and phenotypically heterogeneous tumors. Spectrum of chromosomal alterations and activating mutationsΒ corresponding to tumor molecular portraits varies in melanomas of different location. Most of cutaneous melanomas contain BRAF (50 %) orΒ NRAS (20 %) mutations, and NRAS mutations occur on chronically sun-exposed skin. Activating KIT mutations have been reported in approximatelyΒ 20–30 % of certain subtypes of melanoma, including acral and mucosal, and melanoma that develop on photodamaged skin.Β Cutaneous metastatic melanoma derive from preexisting nevi in 25 % of cases, molecular mechanisms of nevi malignization are discussed.Β Deepsequencing approaches of melanoma samples of different melanoma types highlighted new melanoma driver genes, that are damagedΒ due to tumorigenic effects of ultraviolet: PPP6C, RAC1, SNX31, TACC1 and STK19. The progress in melanoma studies allow to receive theΒ positive results in melanoma treatment in particularly with targeted therapy. The molecular targets and future perspectives for targeted therapyΒ of metastatic skin melanoma are discussed.МСланома – Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ опасноС злокачСствСнноС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΆΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с высоким риском мСтастазирования. ΠœΠ΅Ρ‚Π°ΡΡ‚Π°Π·ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ° прогностичСски ΠΊΡ€Π°ΠΉΠ½Π΅ нСблагоприятна ΠΈ рСзистСнтна ΠΊΠΎ всСм Π²ΠΈΠ΄Π°ΠΌ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ биологичСским ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ. Π’ послСднСС врСмя достигнуты Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ успСхи Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹. Π’ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅Β ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Ρ‹ ΠΊΠ°ΠΊ внСшниС (ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ΅ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅), Ρ‚Π°ΠΊ ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ (наслСдствСнныС гСнСтичСскиС) Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹.Β Π’ 5–14 % случаСв ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ° ΠΊΠΎΠΆΠΈ являСтся наслСдствСнным Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ΠΌ, обусловлСнным измСнСниями Π² Π³Π΅Π½Π°Ρ… прСдрасполоТСнности. Π€Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ риска развития сСмСйной ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π³Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π³Π΅Π½Π°Ρ… рСгуляции ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°Β CDKN2A ΠΈ CDK4, Π³Π΅Π½Π΅ гомСостаза ΠΌΠ΅Π»Π°Π½ΠΎΡ†ΠΈΡ‚ΠΎΠ² MITF, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ΄Π½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΡ‹ ряда Π½ΠΈΠ·ΠΊΠΎΠΏΠ΅Π½Π΅Ρ‚Ρ€Π°Π½Ρ‚Π½Ρ‹Ρ…Β Π³Π΅Π½ΠΎΠ², Π² частности Π³Π΅Π½Π° MC1R. Π’ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π· ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Ρ‹ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Ρ‹ ΠΈ Π³Π΅Π½Ρ‹-супрСссоры, входящиС Π² состав Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ…Β ΠΊΠ°ΡΠΊΠ°Π΄ΠΎΠ². Π’ 75 % случаСв ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΊΠΎΠΆΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ гипСрактивация сигнального ΠΏΡƒΡ‚ΠΈ RAS / RAF / MEK / ERK. Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΠΌ гСнСтичСским событиСм Π² ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ΅ являСтся активация сигнального ΠΏΡƒΡ‚ΠΈ PI3K– AKT– mTOR, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ стадийности ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹. МСланома прСдставляСт собой гСнСтичСски ΠΈ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ‡Π΅ΡΠΊΠΈΒ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ хромосомных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ молСкулярныС ΠΏΠΎΡ€Ρ‚Ρ€Π΅Ρ‚Ρ‹ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ, отличаСтся Π² ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π’ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ΅ повСрхности ΠΊΠΎΠΆΠΈ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈΒ Π² Π³Π΅Π½Π°Ρ… BRAF (50 %), NRAS (20 %), ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ NRAS Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ для ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π½Π° участках ΠΊΠΎΠΆΠΈ, ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Π½Ρ‹Ρ… инсоляции.Β ΠΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ KIT Π²Ρ‹ΡΠ²Π»ΡΡŽΡ‚ Π² 20–30 % случаСв ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ Π°ΠΊΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΌΡƒΠΊΠΎΠ·Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ΅, возникшСй Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ поврСТдСния ΠΊΠΎΠΆΠΈ. Π’ 25 % случаСв ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ° ΠΊΠΎΠΆΠΈ развиваСтся ΠΈΠ· ΠΏΡ€Π΅Π΄ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ нСвуса, Π² ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ молСкулярныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΌΠ°Π»ΠΈΠ³Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ нСвусов. ИспользованиС полноэкзомного сСквСнирования ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ Π³Π΅Π½Ρ‹, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… связаны с ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°ΡŽΡ‰ΠΈΠΌ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ΠΌΒ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚Π°: PPP6C, RAC1, SNX31, TACC1 ΠΈ STK19. УспСхи Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Π² Π΅Π΅Β Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ, особСнно с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ рассмотрСны молСкулярныС мишСни ΠΈ пСрспСктивы Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ мСтастатичСской ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΊΠΎΠΆΠΈ
    • …
    corecore