

Contents lists available at ScienceDirect

Topology

The topology of systems of hyperspaces determined by dimension functions*

Taras Banakh a,b,*, Natalia Mazurenko c

- ^a Department of Mathematics, Ivan Franko University in Lviv, Ukraine
- ^b Instytut Matematyki, Jan Kochanowski University in Kielce, Poland
- ^c Precarpatian National University, Ivano-Frankivsk, Ukraine

ARTICLE INFO

MSC: 57N17 54B20 54F45

55M10 54F65

54F65 28A80

Keywords: Hyperspace Dimension function Hausdorff dimension Hilbert cube Absorbing system

ABSTRACT

Given a non-degenerate Peano continuum X, a dimension function $D: 2_X^X \to [0, \infty]$ defined on the family 2_X^X of compact subsets of X, and a subset $\Gamma \subset [0, \infty)$, we recognize the topological structure of the system $\langle 2^X, D_{\leq \gamma}(X) \rangle_{\alpha \in \Gamma}$, where 2^X is the hyperspace of non-empty compact subsets of X and $D_{\leq \gamma}(X)$ is the subspace of 2^X , consisting of non-empty compact subsets $K \subset X$ with $D(K) \leq \gamma$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of topological characterization (identification) of topological objects is a central problem in topology. A classical result of this sort is the Curtis–Schori Theorem [1] asserting that for each non-degenerate Peano continuum X the hyperspace 2^X of non-empty compact subsets of X endowed with the Vietoris topology is homeomorphic to the Hilbert cube $Q = [-1, 1]^\omega$. A bit later, Curtis [2] characterized the topological spaces X whose hyperspace 2^X is homeomorphic to the pseudointerior $s = (-1, 1)^\omega$ of the Hilbert cube as locally connected Polish nowhere locally compact spaces.

In [3] Dobrowolski and Rubin recognized the topology of the subspace $\dim_{\leq n}(Q) \subset 2^Q$ consisting of compact subsets of Q having covering dimension $\leq n$. They constructed a homeomorphism $h: 2^Q \to Q^\omega$ such that $h(\dim_{\leq n}(Q)) = Q^n \times s^{\omega \setminus n}$ for all $n = \{0, \ldots, n-1\} \in \omega$. In this case it is said that the system $\langle 2^Q, \dim_{\leq n}(Q) \rangle_{n \in \omega}$ is homeomorphic to the system $\langle Q^\omega, Q^n \times s^{\omega \setminus n} \rangle_{n \in \omega}$.

This result was later generalized by Gladdines [4] to products of Peano continua. Finally, Cauty [5] has characterized the spaces X for which the system $\langle 2^X, \dim_{\leq n}(X) \rangle_{n \in \omega}$ is homeomorphic to $\langle Q^{\omega}, Q^n \times s^{\omega \setminus n} \rangle_{n \in \omega}$ as Peano continua whose any non-empty open subset contains compact subsets of arbitrary high finite dimension.

In [6] given a metric space X the second author initiated the study of the subspace $HD_{\leq \gamma}(X) \subset 2^X$ of compact subsets of X whose Hausdorff dimension is $\leq \gamma$. Unlike the (integer-valued) topological dimension, the Hausdorff dimension of a metric compactum can take on any non-negative real value γ . So, the system $\langle 2^X, HD_{\leq \gamma}(X)\rangle_{\gamma\in[0,\infty)}$ that naturally appears in this situation is uncountable. In [7] it was proved that for a finite-dimensional cube $X = [0, 1]^n$ the system $\langle 2^X, HD_{\leq \gamma}(X)\rangle_{\gamma\in[0,n)}$

This work was supported by the State Fund of fundamental research of Ukraine, project F25.1/099.

^{*} Corresponding author at: Department of Mathematics, Ivan Franko University in Lviv, Ukraine. E-mail addresses: tbanakh@yahoo.com (T. Banakh), mnatali@ukr.net (N. Mazurenko).

is homeomorphic to the system $\langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{> \gamma}} \rangle_{\gamma \in [0,n)}$ (by \mathbb{Q} we denote the space of rational numbers). Here for a subset $A \subset \mathbb{R}$ and a real number γ we put

$$A_{\leq \gamma} = \{ a \in A : a \leq \gamma \}, \qquad A_{\geq \gamma} = \{ a \in A : a \geq \gamma \}$$

$$A_{<\gamma} = \{ a \in A : a < \gamma \}, \qquad A_{>\gamma} = \{ a \in A : a > \gamma \}.$$

Both the (topological) covering dimension and the (metric) Hausdorff dimension are particular cases of dimension functions defined as follows.

Definition 1. A function $D: 2_*^X \to [0, \infty]$ defined on the family 2_*^X of compact subsets of a topological space X is called a *dimension function* if:

- 1. $D(\emptyset) = 0$;
- 2. D is monotone in the sense that D(A) < D(B) for any compact subsets $A \subset B$ of X;
- 3. D is *finitely additive* in the sense that $\overline{D}(F \cup A \cup B) \leq \max\{D(A), D(B)\}$ for any finite subset $F \subset X$ and disjoint compact subsets $A, B \subset X$;
- 4. D is ω -additive in the sense that each non-empty open subset $U \subset X$ contains non-empty open sets $U_n \subset U$, $n \in \omega$, such that each compact subset $K \subset \operatorname{cl}_X(\bigcup_{n \in \omega} U_n)$ has dimension $D(K) \leq \sup_{n \in \omega} D(K \cap \overline{U}_n)$.

Given a dimension function $D: 2^X_* \to [0, \infty]$ on X and a subset $\Gamma \subset [0, \infty)$, for every $\gamma \in \Gamma$ consider the subspace

$$\mathsf{D}_{\leq \gamma}(X) = \{ F \in 2^X : \mathsf{D}(F) \leq \gamma \}$$

in the hyperspace 2^X . Our aim is to recognize the topological structure of the system $\langle 2^X, D_{\leq \gamma}(X) \rangle_{\gamma \in \Gamma}$.

In the sequel, by a Γ -system $\langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ we shall understand a pair consisting of a set X and a family $\langle X_{\gamma} \rangle_{\gamma \in \Gamma}$ of subsets of X, indexed by the elements of an index set Γ . Two Γ -systems $\langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ and $\langle Y, Y_{\gamma} \rangle_{\gamma \in \Gamma}$ are homeomorphic if there is a homeomorphism $h: X \to Y$ such that $h(X_{\gamma}) = Y_{\gamma}$ for all $\gamma \in \Gamma$.

The following theorem describes the topological structure of the Γ -system $\langle 2^X, D_{\leq \gamma}(X) \rangle_{\gamma \in \Gamma}$ for a dimension function $D: 2^X_* \to [0, \infty]$ taking values in the half-line with attached infinity (that is assumed to be larger than any real number). In that theorem we shall refer to the subsets $(\gamma]_{\Gamma}$ defined for $\Gamma \subset \mathbb{R}$ and $\gamma \in \Gamma$ as follows:

$$(\gamma]_{\varGamma} = \begin{cases} (\gamma, \inf(\varGamma_{>\gamma})] & \text{if } \gamma < \inf(\varGamma_{>\gamma}); \\ (\sup(\varGamma_{<\gamma}), \gamma] & \text{if } \varGamma \ni \sup(\varGamma_{<\gamma}) < \gamma = \inf(\varGamma_{>\gamma}); \\ [\sup(\varGamma_{<\gamma}), \gamma] & \text{in all other cases.} \end{cases}$$

In this definition we assume that $\sup(\emptyset) = -\infty$ and $\inf(\emptyset) = +\infty$.

Theorem 1. Let X be a topological space and $D: 2^X_* \to [0, \infty]$ be a dimension function. For every subset $\Gamma \subset [0, \infty)$ the Γ -system $\langle 2^X, D_{\leq \gamma}(X) \rangle_{\gamma \in \Gamma}$ is homeomorphic to the Γ -system $\langle Q^\mathbb{Q}, Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{>\gamma}} \rangle_{\gamma \in \Gamma}$ if and only if

- 1. X is a non-degenerate Peano continuum,
- 2. each subspace $D_{<\gamma}(X)$, $\gamma \in \Gamma$, is of type G_{δ} in 2^X , and
- 3. each non-empty open set $U \subset X$ for every $\gamma \in \Gamma$ contains a compact subset $K \subset U$ with $D(K) \in (\gamma)_{\Gamma}$.

First, we apply this theorem to integer-valued dimension functions. We identify each natural number n with the set $\{0, \ldots, n-1\}$. Also we put $\overline{\omega} = \omega \cup \{\omega\}$.

Corollary 1. Let X be a topological space and $D: 2_*^X \to \overline{\omega}$ be a dimension function. For every $n \in \overline{\omega}$ the n-system $\langle 2^X, D_{\leq k}(X) \rangle_{k \in n}$ is homeomorphic to the n-system $\langle Q^{\omega}, Q^k \times s^{\omega \setminus k} \rangle_{k \in n}$ if and only if

- 1. X is a non-degenerate Peano continuum,
- 2. each subspace $D_{\leq k}(X)$, $k \in n$, is of type G_{δ} in 2^{X} , and
- 3. each non-empty open set $U \subset X$ for every $k \in n$ contains a compact subset $K \subset U$ with D(K) = k.

The covering dimension dim and the cohomological dimension \dim_G for an arbitrary Abelian group G are examples of integer-valued dimension functions. Therefore Corollary 1 implies the following theorem of Cauty [5] that was mentioned above.

Theorem 2 (Cauty). For any non-degenerate Peano continuum X the ω -systems $\langle 2^X, \dim_{\leq n}(X) \rangle_{n \in \omega}$ is homeomorphic to $\langle Q^{\omega}, Q^n \times s^{\omega \setminus n} \rangle_{n \in \omega}$ if and only if each non-empty open set $U \subset X$ contains an compact subset of arbitrary finite dimension.

In [5] Cauty notices, that this theorem holds also for the cohomological dimension \dim_G or any other dimension function in the sense of [3]. It does not demand any modifications of arguments in the proof.

Applying Theorem 1 to the half-interval $\Gamma = [0, b) \subset [0, \infty)$, we obtain:

Corollary 2. Let X be a topological space and $D: 2^X_* \to [0, \infty]$ be a dimension function. For every $b \in [0, \infty]$ the [0, b)-system $\langle 2^X, D_{\leq \gamma}(X) \rangle_{\gamma \in [0,b)}$ is homeomorphic to the [0, b)-system $\langle Q^\mathbb{Q}, Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{>\gamma}} \rangle_{\gamma \in [0,b)}$ if and only if

1. X is a non-degenerate Peano continuum,

- 2. each subspace $D_{\leq \nu}(X)$, $\nu \in [0, b)$, is of type G_{δ} in 2^{X} , and
- 3. each non-empty open set $U \subset X$ for every $\gamma \in [0, b)$ contains a compact subset $K \subset U$ with $D(K) = \gamma$.

Applying Corollary 2 to the Hausdorff dimension \dim_H we obtain the following theorem whose partial case for $X = \mathbb{I}^n$ was proved in [7].

Theorem 3. For a number $b \in (0, \infty]$ and a non-degenerate metric Peano continuum X the system $\langle 2^X, HD_{\leq \gamma}(X) \rangle_{\gamma \in [0,b)}$ is homeomorphic to the system $\langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{>\gamma}} \rangle_{\gamma \in [0,b)}$ if and only if each non-empty open subset $U \subset X$ has Hausdorff dimension $\dim_H(U) > b$.

To derive this theorem from Corollary 2, we need to check the conditions (2) and (3) for the Hausdorff dimension. The condition (2) was established in [6] while (3) follows from the subsequent Mean Value Theorem for Hausdorff dimension, which will be proved in Section 6.

Theorem 4. Let X be a separable complete metric space X. For every non-negative real number $d < \dim_H(X)$ the space X contains a compact subset $K \subset X$ of Hausdorff dimension $\dim_H(K) = d$.

A similar Mean Value Theorem holds for topological dimension: each regular space X with finite inductive dimension $\operatorname{ind}(X)$ contains a closed subspaces of any dimension $k \leq \operatorname{ind}(X)$, see [8, 1.5.1]. However, (in contrast to the Hausdorff dimension) this theorem does not hold for infinite-dimensional spaces: there is an infinite-dimensional compact metrizable space X containing no subspace of positive finite dimension [8, 5.2.23].

2. Absorbing systems in the Hilbert cube

Theorem 1 is proved by the technique of absorbing systems created and developed in [9,4]. So, in this section we start by recalling some basic information related to absorbing systems.

From now on all topological spaces are metrizable and separable, all maps are continuous. By \mathbb{I} we denote the unit interval [0, 1], by \mathbb{Q} the space of rational numbers, by $Q = [-1, 1]^{\omega}$ the Hilbert cube, by $s = (-1, 1)^{\omega}$ its pseudointerior and by B(Q) its pseudoboundary. By a Hilbert cube we understand any topological space homeomorphic to the Hilbert cube Q. In particular, for each at most countable set A the power Q^A is a Hilbert cube; $B(Q^A) = Q^A \setminus S^A$ will stand for its pseudoboundary.

Given two maps $f, g: X \to Y$ and a cover \mathcal{U} of Y we write $(f, g) \prec \mathcal{U}$ and say that f, g are \mathcal{U} -near if for every point $x \in X$ there is a set $U \in \mathcal{U}$ such that $\{f(x), g(x)\} \subset U$.

A closed subset A of an ANR-space X is a called a Z-set if for each map $f:Q\to X$ and an open cover $\mathcal U$ of X there is a map $g:Q\to X\setminus A$ such that $(f,g)\prec \mathcal U$. A subset $A\subset X$ is called a σZ -set if A can be written as the countable union of Z-sets. It is known [10] that a closed σZ -set in a Polish ANR-space is a Z-set. An embedding $f:K\to X$ is called a Z-embedding if the image f(K) is a Z-set in X.

It is well known that each map $f: K \to Q$ defined on a compact space can be approximated by *Z*-embeddings, see [11, 10].

Let Γ be a set. By a Γ -system $\mathscr{X} = \langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ we shall understand a pair consisting of a space X and an indexed collection $\langle X_{\gamma} \rangle_{\gamma \in \Gamma}$ of subsets of X. Given a map $f: Z \to X$ and a set $K \subset X$ let $f^{-1}(\mathscr{X}) = \langle f^{-1}(X), f^{-1}(X_{\gamma}) \rangle_{\gamma \in \Gamma}$ and $K \cap \mathscr{X} = \langle K \cap X, K \cap X_{\gamma} \rangle_{\gamma \in \Gamma}$.

From now on, \mathfrak{C}_{Γ} is a fixed class of Γ -systems.

Generalizing the standard concept of a strongly universal pair [12, Section 1.7] to Γ -systems we get an important notion of a strongly \mathfrak{C}_{Γ} -universal Γ -system.

Definition 2. A Γ-system $\mathscr{X} = \langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ is defined to strongly \mathfrak{C}_{Γ} -universal if for any open cover \mathfrak{U} on X, any Γ-system $\mathscr{C} = \langle C, C_{\gamma} \rangle_{\gamma \in \Gamma} \in \mathfrak{C}_{\Gamma}$, and a map $f : C \to X$ whose restriction $f | B : B \to X$ to a closed subset $B \subset C$ is a Z-embedding with $(f | B)^{-1}(\mathscr{X}) = B \cap \mathscr{C}$ there exists a Z-embedding $\tilde{f} : C \to X$ such that $(\tilde{f}, f) \prec \mathfrak{U}, \tilde{f} | B = f | B$, and $\tilde{f}^{-1}(\mathscr{X}) = \mathscr{C}$.

The strong universality is the principal ingredient in the notion of a \mathfrak{C}_{Γ} -absorbing system, generalizing the notion of an absorbing pair, see [12, Section 1.6].

Definition 3. A Γ -system $\mathscr{X} = \langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ is defined to \mathfrak{C}_{Γ} -absorbing if

- (i) \mathscr{X} is strongly \mathfrak{C}_{Γ} -universal;
- (ii) there is a sequence $(Z_n)_{n\in\omega}$ of Z-sets in X such that $\bigcup_{\nu\in\Gamma}X_{\nu}\subset\bigcup_{n\in\omega}Z_n$ and $Z_n\cap\mathscr{X}\in\mathfrak{C}_\Gamma$ for all $n\in\omega$.

A remarkable feature of \mathfrak{C}_{Γ} -absorbing system in the Hilbert cube is their topological equivalence. We define two Γ -systems $\langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ and $\langle Y, Y_{\gamma} \rangle_{\gamma \in \Gamma}$ to be *homeomorphic* if there is a homeomorphism $h: X \to Y$ such that $h(X_{\gamma}) = Y_{\gamma}$ for $\gamma \in \Gamma$.

The following Uniqueness Theorem can be proved by analogy with Theorem 1.7.6 from [12].

Theorem 5. Two \mathfrak{C}_{Γ} -absorbing Γ -systems $\langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ and $\langle Y, Y_{\gamma} \rangle_{\gamma \in \Gamma}$ are homeomorphic provided X and Y are homeomorphic to a manifold modeled on Q or S.

By a manifold modeled on a space E we understand a metrizable separable space M whose any point has an open neighborhood homeomorphic to an open subset of the model space E.

3. Characterizing model absorbing systems

In this section, given a subset $\Gamma \subset \mathbb{R}$ we characterize the topology of the model Γ -system $\langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{>\gamma}} \rangle_{\gamma \in \Gamma}$. In fact, it will be more convenient to work with the complementary Γ -system

$$\Sigma_{\Gamma} = \langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\leq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}}) \rangle_{\gamma \in \Gamma},$$

where $B(Q^{\mathbb{Q}_{>\gamma}}) = Q^{\mathbb{Q}_{>\gamma}} \setminus s^{\mathbb{Q}_{>\gamma}}$. We shall prove that the latter system is $\sigma \mathfrak{C}_{\Gamma}$ -absorbing for a suitable class $\sigma \mathfrak{C}_{\Gamma}$ of Γ -systems. Let $\Gamma \subset \mathbb{R}$. Let us define a Γ -system $\langle A, A_{\gamma} \rangle_{\gamma \in \Gamma}$ to be

- σ -compact if the space A is compact while all subspaces A_{γ} , $\gamma \in \Gamma$, are σ -compact;
- inf-continuous if $A_{\gamma} = \bigcup_{\beta \in B} A_{\beta}$ for any subset $B \subset \Gamma$ with inf $B = \gamma \in \Gamma$.

By $\sigma \mathfrak{C}_{\Gamma}$ we shall denote the class of σ -compact inf-continuous Γ -systems. Let us observe that each Γ -system $\langle A, A_{\gamma} \rangle_{\gamma \in \Gamma} \in \sigma \mathfrak{C}_{\Gamma}$ is decreasing. Indeed, for any real numbers $\alpha < \beta$ in Γ the equality $\alpha = \inf\{\alpha, \beta\}$ implies $A_{\alpha} = A_{\alpha} \cup A_{\beta} \supset A_{\beta}$.

Each Γ -system $\mathcal{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \Gamma} \in \sigma\mathfrak{C}_{\Gamma}$ can be extended to the \mathbb{R} -system $\tilde{\mathcal{A}} = \langle A, \tilde{A}_{\gamma} \rangle_{\gamma \in \mathbb{R}} \in \sigma\mathfrak{C}_{\mathbb{R}}$ consisting of the sets

$$\tilde{A}_{\gamma} = \begin{cases} \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} & \text{if } \sup(\Gamma_{<\gamma}) \not\in \Gamma \text{ or } \gamma = \inf(\Gamma_{\geq \gamma}); \\ A_{\alpha} & \text{if } \alpha = \sup(\Gamma_{<\gamma}) \in \Gamma \text{ and } \gamma < \inf(\Gamma_{\geq \gamma}), \end{cases}$$

indexed by real numbers γ .

Lemma 1. The \mathbb{R} -system $\tilde{\mathcal{A}} = \langle A, \tilde{A}_{\gamma} \rangle_{\gamma \in \mathbb{R}}$ is σ -compact, inf-continuous and extends the Γ -system $\mathcal{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \Gamma}$ in the sense that $\tilde{A}_{\gamma} = A_{\gamma}$ for all $\gamma \in \Gamma$.

Proof. To see that the \mathbb{R} -system \tilde{A} is σ -compact, fix any real number γ . The set \tilde{A}_{γ} is clearly σ -compact if $\tilde{A}_{\gamma} = A_{\alpha}$ for some $\alpha \in \Gamma$. So, we assume that $\tilde{A}_{\gamma} \neq A_{\alpha}$ for all $\alpha \in \Gamma$. In this case $\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha}$ and $\inf \Gamma_{\geq \gamma} \notin \Gamma$. Choose any countable dense subset $D \subset \Gamma$ and observe that $\inf D_{\geq \gamma} = \inf \Gamma_{\geq \gamma}$ and hence

$$\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} = \bigcup_{\alpha \in D_{\geq \gamma}} A_{\alpha}$$

is σ -compact, being the countable union of σ -compact spaces A_{α} , $\alpha \in D_{>\gamma}$.

Observe that for every $\gamma \in \Gamma$ we get $\gamma = \inf(\Gamma_{\geq \gamma})$ and hence $\tilde{A}_{\gamma} \subset \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} = \tilde{A}_{\gamma}$. The reverse inclusion $\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} \subset A_{\gamma}$ follows from the decreasing property of the γ -system A. Thus $A_{\gamma} = \tilde{A}_{\gamma}$, which means that the \mathbb{R} -system \tilde{A} extends the Γ -system A.

Next, we prove that the \mathbb{R} -system \tilde{A} is decreasing. Given two real numbers $\beta < \gamma$, we need to show that $\tilde{A}_{\beta} \supset \tilde{A}_{\gamma}$. We consider four cases:

(1) Both β and γ satisfy the first case of the definition of \tilde{A}_{β} and \tilde{A}_{ν} :

$$(\sup(\Gamma_{<\beta}) \not\in \Gamma \text{ or } \beta = \inf(\Gamma_{>\beta}))$$
 and $(\sup(\Gamma_{<\gamma}) \not\in \Gamma \text{ or } \gamma = \inf(\Gamma_{>\gamma}))$.

In this case $\beta < \gamma$ implies $\Gamma_{\geq \beta} \supset \Gamma_{\geq \gamma}$ and thus

$$\tilde{A}_{\beta} = \bigcup_{\alpha \in \Gamma_{>\beta}} A_{\alpha} \supset \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\gamma} = \tilde{A}_{\gamma}.$$

(2) The element β satisfies the first case of the definition of \tilde{A}_{β} while γ satisfies the second case:

$$\left(\sup(\Gamma_{<\beta}) \notin \Gamma \text{ or } \beta = \inf(\Gamma_{\ge\beta})\right) \text{ and } \alpha = \sup(\Gamma_{<\gamma}) \in \Gamma \text{ and } \gamma < \inf(\Gamma_{\ge\gamma}).$$

In this case $\beta \leq \alpha$. Indeed, assuming conversely that $\alpha < \beta$, we get $\Gamma_{<\beta} = \Gamma_{<\gamma}$ and thus $\alpha = \sup(\Gamma_{<\beta}) \in \Gamma$, which implies that $\beta = \inf(\Gamma_{\geq\beta})$. In this case, $\alpha = \sup(\Gamma_{<\gamma}) \geq \beta$, which is a contradiction. So, $\beta \leq \alpha$ and then $\alpha \in \Gamma_{\geq\beta}$ and $\tilde{A}_{\beta} \supset A_{\alpha} = \tilde{A}_{\gamma}$.

(3) The element β satisfies the second case of the definition of \tilde{A}_{β} while γ satisfies the first one:

$$\alpha = \sup(\Gamma_{<\beta}) \in \Gamma$$
 and $\beta < \inf(\Gamma_{\ge\beta})$ and $\sup(\Gamma_{<\gamma}) \notin \Gamma$ or $\gamma = \inf(\Gamma_{\ge\gamma})$.

In this case

$$\tilde{A}_{\beta} = A_{\alpha} \supset \bigcup_{\delta \in \Gamma_{>\gamma}} A_{\delta} = \tilde{A}_{\gamma}.$$

(4) Both β and γ satisfy the second case of the definition of \tilde{A}_{β} and \tilde{A}_{γ} :

$$\alpha_{\beta} = \sup(\Gamma_{<\beta}) \in \Gamma, \quad \beta < \inf(\Gamma_{>\beta}), \qquad \alpha_{\gamma} = \sup(\Gamma_{<\gamma}) \in \Gamma, \quad \gamma < \inf(\Gamma_{>\gamma}).$$

In this case $\alpha_{\beta} \leq \alpha_{\gamma}$ and $\tilde{A}_{\beta} = A_{\alpha_{\beta}} \supset A_{\alpha_{\gamma}} = \tilde{A}_{\gamma}$. This completes the proof of the decreasing property of the \mathbb{R} -system \tilde{A} .

Finally, we show that the \mathbb{R} -system $\tilde{\mathcal{A}}$ is inf-continuous. Fix any real number γ and a subset $B \subset \mathbb{R}$ with $\gamma = \inf B$. We need to check that $\tilde{A}_{\gamma} = \bigcup_{\beta \in B} \tilde{A}_{\beta}$. The decreasing property of \tilde{A} guarantees that $\tilde{A}_{\gamma} \supset \bigcup_{\beta \in B} \tilde{A}_{\beta}$. It remains to prove the reverse inclusion, which is trivial if $\gamma \in B$. So, we assume that $\gamma \notin B$. Two cases are possible:

1. $\sup(\Gamma_{<\gamma}) \not\in \Gamma$ or $\gamma = \inf(\Gamma_{\geq \gamma})$. In this case $\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{>\gamma}} A_{\alpha}$. We consider three subcases:

(1a) If $\gamma = \inf(\Gamma_{>\nu})$, then

$$\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} = \bigcup_{\alpha \in \Gamma_{> \gamma}} A_{\alpha}$$

because of the inf-continuity of the system A. Given any point $a \in \tilde{A}_{\gamma}$, find $\alpha \in \Gamma_{>\gamma}$ such that $a \in A_{\alpha}$. Since $B \not\ni \gamma = \inf B$, there is a point $\beta \in B \cap (\gamma, \alpha)$. Now the definition of \tilde{A}_{β} implies that $a \in A_{\alpha} \subset \tilde{A}_{\beta} \subset \bigcup_{\delta \in B} \tilde{A}_{\delta}$.

(1b) If $\Gamma \ni \gamma < \inf(\Gamma_{>\gamma})$, then we can find $\beta \in B \cap (\gamma, \inf(\Gamma_{>\gamma}))$ and conclude that $\widetilde{A_{\gamma}} = A_{\gamma} = \widetilde{A_{\beta}} \subset \bigcup_{\delta \in B} \widetilde{A_{\delta}}$. (1c) If $\Gamma \not\ni \gamma < \inf(\Gamma_{>\gamma})$, then $\sup(\Gamma_{<\gamma}) \not\in \Gamma$. Choose any point $\beta \in B \cap (\gamma, \inf(\Gamma_{>\gamma}))$ and observe that $\Gamma_{\geq \beta} = \Gamma_{\geq \gamma}$, $\sup(\Gamma_{<\beta}) = \sup(\Gamma_{<\nu}) \not\in \Gamma$ and thus

$$\tilde{A}_{\gamma} = \bigcup_{\alpha \in \Gamma_{\geq \gamma}} A_{\alpha} = \bigcup_{\alpha \in \Gamma_{\geq \beta}} A_{\alpha} = \tilde{A}_{\beta} \subset \bigcup_{\delta \in B} \tilde{A}_{\delta}.$$

2. $\alpha = \sup(\Gamma_{<\gamma}) \in \Gamma$ and $\gamma < \inf(\Gamma_{\geq \gamma})$, in which case $\tilde{A}_{\gamma} = A_{\alpha}$. Since $\inf B = \gamma \notin \Gamma$, there is a point $\beta \in B \cap (\gamma, \inf(\Gamma_{>\gamma})).$

(2a) If $\gamma \in \Gamma$, then $\sup(\Gamma_{<\beta}) = \gamma \in \Gamma$ and thus $\tilde{A}_{\gamma} = A_{\gamma} = \tilde{A}_{\beta} \subset \bigcup_{\delta \in R} A_{\delta}$.

(2b) If
$$\gamma \notin \Gamma$$
, then $\Gamma_{<\beta} = \Gamma_{<\gamma}$ and thus $\tilde{A}_{\gamma} = A_{\alpha} = \tilde{A}_{\beta} \subset \bigcup_{\delta \in B} A_{\delta}$.

In the following theorem for every subset $\Gamma \subset \mathbb{R}$ we introduce a model $\sigma \mathfrak{C}_{\Gamma}$ -absorbing system Σ_{Γ} in the Hilbert cube O^ℚ.

Theorem 6. For every $\Gamma \subset \mathbb{R}$ the Γ -system

$$\Sigma_{\Gamma} = \langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\leq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}}) \rangle_{\gamma \in \Gamma}$$

is $\sigma \mathfrak{C}_{\Gamma}$ -absorbing and hence is homeomorphic to any other $\sigma \mathfrak{C}_{\Gamma}$ -absorbing Γ -system $\langle X, X_{\gamma} \rangle_{\gamma \in \Gamma}$ in a Hilbert cube X.

Proof. First we check that the system Σ_{Γ} is strongly $\sigma \mathfrak{C}_{\Gamma}$ -universal.

We start defining a suitable metric on the Hilbert cube $Q^{\mathbb{Q}}$. Let $\nu:\mathbb{Q}\to(0,1)$ be any vanishing function, which means that for every $\varepsilon > 0$ the set $\{q \in \mathbb{Q} : \nu(q) \geq \varepsilon\}$ is finite. Take any metric d generating the topology of the Hilbert cube Qand consider the metric

$$\rho((x_q), (y_q)) = \max_{q \in \mathbb{O}} \nu(q) \cdot d(x_q, y_q)$$

on the Hilbert cube $Q^{\mathbb{Q}}$.

In order to prove the strong $\sigma \mathfrak{C}_{\Gamma}$ -universality of the system Σ_{Γ} , fix a Γ -system $\mathscr{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \Gamma} \in \sigma \mathfrak{C}_{\Gamma}$ and a map $f:A\to Q^\mathbb{Q}$ that restricts to a Z-embedding of some closed subset $K\subset A$ such that $(f|K)^{-1}(\Sigma_{\Gamma})=K\cap\mathscr{A}$. Given $\varepsilon>0$, we need to construct a Z-embedding $\tilde{f}: A \to \mathbb{Q}^{\mathbb{Q}}$ such that $\rho(\tilde{f}, f) < \varepsilon, \tilde{f} | K = f | K$ and $\tilde{f}^{-1}(\Sigma_{\nu}) = A_{\nu}$ for all $\gamma \in \Gamma$.

By Lemma 1, the Γ -system A extends to an \mathbb{R} -system $\tilde{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \mathbb{R}} \in \sigma \mathfrak{C}_{\mathbb{R}}$. We shall construct a Z-embedding

 $\tilde{f}:A \to Q^{\mathbb{Q}}$ such that $\rho(\tilde{f},f) < \varepsilon, \tilde{f}|K=f|K$ and $\tilde{f}^{-1}(\Sigma_{\gamma}) \setminus K = A_{\gamma} \setminus K$ for all $\gamma \in \mathbb{R}$. For every $q \in \mathbb{Q}$ let $\mathrm{pr}_q: Q^{\mathbb{Q}} \to Q$ denote the coordinate projection. Since f(K) is a Z-set in $Q^{\mathbb{Q}}$, we can approximate the map f by a map $f':A\to \mathbb{Q}^{\mathbb{Q}}$ such that $\rho(f',f)<\varepsilon/2, f'|K=f|K$ and $f'(A\setminus K)\cap f'(K)=\emptyset$. Using the strong $\sigma\mathfrak{C}_{\{0\}}$ universality of the pair (Q, B(Q)), for each $q \in \mathbb{Q}$ we can approximate the map $\operatorname{pr}_q \circ f' : A \to Q$ by a map $\tilde{f}_q : A \to Q$ such

- (a) $d(\hat{f}_q(x), \operatorname{pr}_q \circ f'(x)) \leq \frac{\varepsilon}{2} \rho(f'(x), f(K))$ for all $x \in A$;
- (b) $\tilde{f}_a|A\setminus K$ is injective;
- (c) $\tilde{f}_q(A \setminus K)$ is a σZ -set in Q;
- (d) $\tilde{f}_a^{-1}(B(Q)) \setminus K = A_q \setminus K$.

Now consider the diagonal product $\tilde{f} = (\tilde{f}_q)_{q \in \mathbb{Q}} : A \to \mathbb{Q}^{\mathbb{Q}}$ of the maps $\tilde{f}_q, q \in \mathbb{Q}$. It follows from (a) that $\tilde{f} | K = f' | K = f | K$, $\rho(\tilde{f},f) \leq \rho(\tilde{f},f') + \rho(f',f) < \varepsilon$ and $\tilde{f}(A\setminus K)\cap f(K) = \emptyset$. Combining this fact with (b) we conclude that the map $\tilde{f}:A\to \mathbb{Q}^{\mathbb{Q}}$ is injective and hence an embedding. It follows from (c) that $\tilde{f}(A)$ is a σZ -set in Q $^{\mathbb{Q}}$ and hence a Z-set, see [10, 6.2.2]. Therefore, \tilde{f} is a Z-embedding approximating the map f.

It remains to check that $\tilde{f}^{-1}(\Sigma_{\gamma}) = A_{\gamma}$ for every $\gamma \in \Gamma$. Since

$$\tilde{f}^{-1}(\Sigma_{\gamma}) \cap K = (f|K)^{-1}(\Sigma_{\gamma}) = K \cap A_{\gamma},$$

it suffices to check that $\tilde{f}^{-1}(\Sigma_{\nu}) \setminus K = A_{\nu} \setminus K$. It follows that

$$\begin{split} \tilde{f}^{-1}(\Sigma_{\gamma}) \setminus K &= \tilde{f}^{-1}(Q^{\mathbb{Q}_{\leq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}})) \setminus K \\ &= \bigcup_{q \in \mathbb{Q}_{>\gamma}} \tilde{f}_q^{-1}(B(Q)) \setminus K = \bigcup_{q \in \mathbb{Q}_{>\gamma}} A_q \setminus K = A_{\gamma} \setminus K. \end{split}$$

The last equality follows from the inf-continuity of the \mathbb{R} -system $\widetilde{\mathscr{A}} = \langle A, A_{\gamma} \rangle_{\gamma \in \mathbb{R}}$ because $\gamma = \inf \mathbb{Q}_{>\gamma}$. This completes the proof of the strong $\sigma \mathfrak{C}_{\Gamma}$ -universality of the system Σ_{Γ} .

It remains to check that the Γ -system Σ_{Γ} satisfies the second condition of Definition 3 of a $\sigma \mathfrak{C}_{\Gamma}$ -absorbing system. It is clear the Γ -system Σ_{Γ} is σ -compact and decreasing. To show that it is inf-continuous, take any subset $B\subset \Gamma$ with $\gamma = \inf B \in \Gamma$. If $\gamma \in B$, then $\Sigma_{\gamma} \supset \bigcup_{\beta \in B} \Sigma_{\beta} \supset \Sigma_{\gamma}$. So, we assume that $\gamma \notin B$. Since the Γ -system $\langle Q^{\mathbb{Q}}, \Sigma_{\gamma} \rangle_{\gamma \in \Gamma}$ is decreasing, we get $\Sigma_{\gamma} \supset \bigcup_{\beta \in \mathbb{R}} \Sigma_{\beta}$. To prove the reverse inclusion, take any point $(x_q)_{q \in \mathbb{Q}} \in \Sigma_{\gamma} = \mathbb{Q}^{\mathbb{Q}_{\leq \gamma}} \times B(\mathbb{Q}^{\mathbb{Q}_{> \gamma}})$ and observe that $x_q \in B(Q)$ for some $q \in \mathbb{Q}_{>\gamma}$. Since $\gamma = \inf B$ the half-interval $[\gamma, q)$ contains a point $\beta \in B$.

Then $(x_q)_{q\in\mathbb{Q}}\in Q^{\mathbb{Q}_{\leq\beta}}\times B(Q^{\mathbb{Q}_{>\beta}})$ and thus $(x_q)_{q\in\mathbb{Q}}\in \Sigma_\beta\subset \bigcup_{\alpha\in\mathbb{R}}\Sigma_\alpha$. Therefore, $\Sigma_\Gamma\in\sigma\mathfrak{C}_\Gamma$. Since each space Σ_{γ} , $\gamma \in \mathbb{Q}$, is a σZ -set in $\mathbb{Q}^{\mathbb{Q}}$, so is the countable union

$$\bigcup_{\gamma \in \mathbb{Q}} \Sigma_{\gamma} = \bigcup_{\gamma \in \mathbb{R}} \Sigma_{\gamma}.$$

So, we can find a sequence $(Z_n)_{n\in\omega}$ of Z-sets in $\mathbb{Q}^{\mathbb{Q}}$ such that

$$\bigcup_{n\in\omega}Z_n=\bigcup_{\gamma\in\mathbb{O}}\Sigma_{\gamma}.$$

It follows from $\Sigma_{\Gamma} \in \sigma\mathfrak{C}_{\Gamma}$ that $Z_n \cap \Sigma_{\Gamma} \in \sigma\mathfrak{C}_{\Gamma}$, which completes the proof of the $\sigma\mathfrak{C}_{\Gamma}$ -absorbing property of the system Σ_{Γ} . By the Uniqueness Theorem 5, each $\sigma \mathfrak{C}_{\Gamma}$ -absorbing system $\langle X, X_{\nu} \rangle_{\nu \in \Gamma}$ in a Hilbert cube X is homeomorphic to the $\sigma \mathfrak{C}_{\Gamma}$ absorbing Γ -system Σ_{Γ} . \square

4. Strongly universal systems of hyperspaces

In this section we establish an important Theorem 7 detecting strongly \mathfrak{C}_{Γ} -universal Γ -systems in hyperspaces. In this section, Γ is any set and \mathfrak{C}_{Γ} is a class of Γ -systems.

By the hyperspace of a topological space X we understand the space 2^X of non-empty compact subsets of X endowed with the Vietoris topology. This topology is generated by the sub-base consisting of the sets

$$\langle V \rangle = \{ K \in 2^X : K \subset V \} \text{ and } \langle X, V \rangle = \{ K \in 2^X : K \cap V \neq \emptyset \}$$

where V is an open subset of X. If the topology of X is generated by a metric d, then the Vietoris topology on 2^X is generated by the Hausdorff metric $d_H(A, B) = \max\{\max_{a \in A} d(a, B), \max_{b \in B} d(b, A)\}.$

In the sequel by $2_{<\omega}^X$ we shall denote the subspace of 2^X consisting of finite non-empty subsets of X. By [4], [10, 8.4.3] for a non-degenerate Peano continuum X the subset $2^X_{<\omega}$ is homotopy dense in 2^X . We recall that a subset A of a topological space X is homotopy dense if there is a homotopy $h: X \times [0, 1] \to X$ such that

h(x, 0) = x and $h(x, t) \in A$ for all $x \in X$ and $t \in (0, 1]$.

We define a subspace $\mathcal{H} \subset 2^X$ to be *finitely additive* if

- $A \cup F \in \mathcal{H}$ for any $A \in \mathcal{H}$ and any finite subset $F \subset X$;
- $A \sqcup B \in \mathcal{H}$ for any disjoint sets $A, B \in \mathcal{H}$.

The first condition implies that each finite subset of X belongs to the family

$$add(\mathcal{H}) = \{ A \in 2^X : \forall B \in \mathcal{H} \ A \cup B \in \mathcal{H} \}.$$

For a Γ -system $\mathscr{H}=\langle 2^X,\,\mathcal{H}_{\gamma}\rangle_{\gamma\in\Gamma}$ the intersection

$$\mathsf{add}(\mathscr{H}) = \bigcap_{\gamma \in \Gamma} \mathsf{add}(\mathcal{H}_{\gamma}) \cap \mathsf{add}(2^X \setminus \mathcal{H}_{\gamma})$$

will be called the additive kernel of \mathcal{H} .

For example, the additive kernel of the ω -system $\langle 2^X, \dim_{\leq n}(X) \rangle_{n \in \omega}$ is equal to the subspace $\dim_{\leq 0}(X)$ of all zerodimensional compact subsets of X. The additive kernel of the $[0,\infty)$ -system $\langle 2^X, HD_{< y}(X)\rangle_{y\in[0,\infty)}$ is equal to the subspace $HD_{\leq 0}(X) \subset 2^X$ consisting of subsets of X with Hausdorff dimension zero.

The following technical theorem was implicitly proved by Cauty in [5].

Theorem 7. Let X be a non-degenerate Peano continuum. A Γ -system $\mathscr{H} = \langle 2^X, \mathscr{H}_{\nu} \rangle_{\nu \in \Gamma}$ is strongly \mathfrak{C}_{Γ} -universal if:

(1) for every $\gamma \in \Gamma$ the subspaces \mathcal{H}_{γ} and $2^{X} \setminus \mathcal{H}_{\gamma}$ are finitely additive;

- (2) for every non-empty open set $U \subset X$ there is a map $\xi: Q \to 2^U \cap \operatorname{add}(\mathscr{H})$ such that for any distinct points $x, x' \in Q$ the symmetric difference $\xi(x) \triangle \xi(x')$ is infinite;
- (3) for any non-empty open set $U \subset X$ and any Γ -system $\mathscr{C} = \langle C, C_{\gamma} \rangle_{\gamma \in \Gamma} \in \mathfrak{C}_{\Gamma}$ there is a map $\varphi : C \to 2^U$ such that $\varphi^{-1}(\mathscr{H}) = \mathscr{C}$.

5. The strong $\sigma \mathfrak{C}_{\Gamma}$ -universality of Γ -systems of hyperspaces

In this section, we detect strongly $\sigma\mathfrak{C}_{\Gamma}$ -universal systems of the form $\langle 2^X, \mathsf{D}_{>\gamma}(X) \rangle_{\gamma \in \Gamma}$ where $\Gamma \subset [0, \infty)$ and $\mathsf{D} : 2^X_* \to [0, \infty]$ is a dimension function defined on the hyperspace of a non-degenerated Peano continuum X. First we establish one property of dimension functions which is formally stronger that the ω -additivity.

Lemma 2. Let X be a metrizable compact space without isolated points and $D: 2_*^X \to [0, \infty]$ be a dimension function. For every non-empty open set $U \subset X$ there is a disjoint sequence $(U_n)_{n \in \omega}$ of non-empty open sets of U such that

1. $\langle U_n \rangle_{n \in \omega}$ converges to some point $x_\infty \in U$, which means that each neighborhood $O(x_\infty)$ contains all but finitely many sets U_n ; 2. for any compact subsets $K_n \subset U_n$, $n \in \omega$, the set $K_\infty = \{x_\infty\} \cup \bigcup_{n \in \omega} K_n$ is compact and has dimension $D(K_\infty) \leq \sup_{n \in \omega} D(K_n)$.

Proof. Take any non-empty open subset $V \subset X$ with $\operatorname{cl}(V) \subset U$. The ω -additivity of the dimension function D yields a sequence $\langle V_n \rangle_{n \in \omega}$ of open subsets of V such that for any compact subset $K \subset \operatorname{cl}(\bigcup_{n \in \omega} V_n)$ has dimension

$$D(K) \leq \sup_{n \in \omega} D(K \cap \overline{V}_n).$$

Replacing the sets V_n by their suitable subsets, we can assume that $\operatorname{diam}(V_n) \to 0$ as $n \to \infty$. In each set V_n pick a point x_n . Since the space X has no isolated point, we can choose the points x_n , $n \in \omega$, to be pairwise distinct. Next, replacing the sets V_n by small neighborhoods of the points x_n , we can make the sets V_n , $n \in \omega$, pairwise disjoint. By the compactness of X, the sequence $\langle x_n \rangle_{n \in \omega}$ contains a subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ that converges to some point $x_\infty \in \operatorname{cl}(V) \subset U$. Since $\operatorname{diam}(V_{n_k}) \to 0$, the sequence $\langle V_{n_k} \rangle_{k \in \omega}$ also converges to x_∞ .

It is clear that the sets $U_k = V_{n\nu}$, $k \in \omega$, have the desired properties. \square

Now we are able to prove the principal ingredient in the proof of Theorem 1. Below $\Gamma \subset [0, \infty)$ and $\sigma \mathfrak{C}_{\Gamma}$ stands for the class of inf-continuous σ -compact Γ -systems.

Theorem 8. Let X be a non-degenerate Peano continuum, $D: 2_*^X \to [0, \infty]$ be a dimension function, and $\Gamma \subset [0, \infty)$. The Γ -system $\langle 2^X, D_{>\gamma}(X) \rangle_{\gamma \in \Gamma}$ is strongly $\sigma \mathfrak{C}_{\Gamma}$ -universal if and only if each non-empty open set $U \subset X$ for every $\gamma \in \Gamma$ contains a compact subset $K \subset U$ with $D(K) \in (\gamma]_{\Gamma}$.

Proof. To prove the "only if" part, assume that the system $\mathscr{D} = \langle 2^X, D_{>\gamma}(X) \rangle_{\gamma \in \Gamma}$ is strongly $\sigma \mathfrak{C}_{\Gamma}$ -universal.

Fix any non-empty open set $U \subset X$ and an element $\gamma \in \Gamma$. We need to find a compact subset $K \subset U$ with $D(K) \in (\gamma]_{\Gamma}$. Let $A = \{a\}$ be any singleton and put $A_{\alpha} = A$ for all $\alpha < \gamma$ and $A_{\alpha} = \emptyset$ for all $\alpha > \gamma$. Put also $A_{\gamma} = \emptyset$ if $\gamma = \inf(\Gamma_{>\gamma})$ and $A_{\gamma} = A$ otherwise.

Observe that the so-defined Γ -system $\mathscr{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \Gamma}$ belongs to the class $\sigma \mathfrak{C}_{\Gamma}$. Now using the strong $\sigma \mathfrak{C}_{\Gamma}$ -universality of the Γ -system \mathscr{D} , find a map $f: A \to 2^U$ such that $f^{-1}(\mathscr{D}) = \mathscr{A}$.

We claim that the compact subset $K = f(a) \subset U$ has dimension $D(K) \in (\gamma]_{\Gamma}$. To prove this inclusion, consider the three cases from the definition of the set $(\gamma)_{\Gamma}$.

- (i) If $\gamma < \inf(\Gamma_{>\gamma})$, then $a \in A_{\gamma}$ and hence $K = f(a) \in D_{>\gamma}(X)$ and $\gamma < D(K)$. On the other hand, for every $\alpha \in \Gamma_{>\gamma}$ we get $a \notin A_{\alpha} = \emptyset$ and thus $K = f(a) \in 2^X \setminus D_{>\alpha}(X) = D_{\leq \alpha}(X)$ and $D(K) \leq \alpha$, which implies $D(K) \leq \inf(\Gamma_{>\gamma})$. Consequently, $D(K) \in (\gamma, \inf(\Gamma_{>\gamma})] = (\gamma]_{\Gamma}$.
- (ii) $\Gamma \ni \sup(\Gamma_{<\Gamma}) < \gamma = \inf(\Gamma_{>\gamma})$. In this case $a \notin A_{\gamma} = \emptyset$ and thus $K = f(a) \in D_{\leq \gamma}(X)$. On the other hand, $a \in A_{\alpha}$ where $\alpha = \sup(\Gamma_{<\gamma}) < \gamma$ and hence $K = f(a) \in D_{>\alpha}(X)$. Consequently, $D(K) \in (\sup(\Gamma_{<\gamma}), \gamma] = (\gamma]_{\Gamma}$.
- (iii) If $\gamma = \inf(\Gamma_{>\gamma})$ and $\sup(\Gamma_{<\gamma})$ is equal γ or does not belongs to Γ , then for every $\alpha \in \Gamma_{<\gamma}$, we get $a \in A_\alpha$ and thus $K = f(a) \in D_{>\alpha}(X)$ ad $D(K) > \alpha$. Consequently, $D(K) \ge \sup(\Gamma_{<\gamma})$. On the other hand, $a \notin A_\gamma = \emptyset$ implies $K = f(a) \in D_{<\gamma}(X)$ and thus $D(K) \in [\sup(\Gamma_{<\gamma}), \gamma] = (\gamma]_{\Gamma}$.

To prove the "only if" part, assume that for every non-empty open set $U \subset X$ and every $\gamma \in \Gamma$ there is a compact subset $K \subset U$ with $D(K) \in (\gamma]_{\Gamma}$.

The strong $\sigma \mathfrak{C}_{\Gamma}$ -universality of the system \mathscr{D} will follow as soon as we check the conditions (1)–(3) of Theorem 7 for the class $\sigma \mathfrak{C}_{\Gamma}$.

- 1. The monotonicity of the dimension function D implies that the subspace $D_{>\gamma}(X)$ of 2^X is finitely additive. The finite additivity of the complement $D_{\leq \gamma}(X) = 2^X \setminus D_{>\gamma}(X)$ follows from the finite additivity of the dimension function D.
- 2. To establish the condition (2) of Theorem 7, fix any non-empty open set $U \subset X$. Lemma 2 yields a sequence $\langle U_n \rangle_{n \in \omega}$ of non-empty open subsets of U that converge to some point $x_\infty \in U$ and has the property that for any compact subsets $K_n \subset U_n$ the set $K = \{x_\infty\} \cup \bigcup_{n \in \omega} K_n$ is compact and has dimension $D(K) \leq \sup_{n \in \omega} D(K_n)$. Each set U_n contains a topological copy of the interval [0, 1], so we can find a topological embedding $\xi_n : [-1, 1] \to U_n$.

Let $v: \omega \to \omega$ be any function such that the preimage $v^{-1}(n)$ of every $n \in \omega$ is infinite. Define a map $\xi: Q \to 2^U$ assigning to each $\vec{t} = \langle t_n \rangle_{n \in \omega} \in Q$ the compact subset

$$\xi(\vec{t}) = \{x_{\infty}\} \cup \{\alpha_n(t_{\nu(n)}) : n \in \omega\}$$

of U having a unique non-isolated point x_{∞} . The equality $D(\emptyset)=0$ and the finite additivity of the dimension function D implies that D(F)=0 for each finite subset $F\subset X$. The choice of the sequence $\langle U_n\rangle$ guarantees that $D(\xi(\overline{t}))=0$ and thus

$$\xi(Q) \subset D_{\leq 0}(X) \subset \operatorname{add}(\mathcal{D}).$$

The choice of the function ν guarantees that $\xi(\vec{t}) \triangle \xi(\vec{u})$ is infinite for any distinct vectors $\vec{t}, \vec{u} \in Q$.

3. To check the condition (3) of Theorem 7, fix any non-empty open set $U \subset X$ and a Γ -system $\mathscr{A} = \langle A, A_{\gamma} \rangle_{\gamma \in \Gamma} \in \sigma \mathfrak{C}_{\Gamma}$. Each set A_{γ} , $\gamma \in \Gamma$, being σ -compact, can be written as the countable union $A_{\gamma} = \bigcup_{n \in \omega} A_{\gamma,n}$ of an increasing sequence $\langle A_{\gamma,n} \rangle_{n \in \omega}$ of compact subsets of A. Let D be a countable subset of Γ meeting each half-interval $[\gamma, \gamma + \varepsilon)$ where $\gamma \in \Gamma$ and $\varepsilon > 0$.

Apply Lemma 2 to find a disjoint family $\langle U_d \rangle_{d \in D}$ of non-empty open subsets of U such that

- $\langle U_d \rangle_{d \in D}$ converges to some point $x_\infty \in U$ in the sense that each neighborhood $O(x_\infty)$ contains all but finitely many sets U_d , $d \in D$;
- for any compact sets $K_d \subset U_d$ the set $K = \{x_\infty\} \cup \bigcup_{d \in D} K_d$ is compact and has dimension $D(K) \le \sup_{d \in D} D(K_d)$.

For every $d \in D$ use Lemma 2 once more and find a disjoint family $(U_{d,n})_{n \in \omega}$ of non-empty open subsets of U such that

- $\langle U_{d,n} \rangle_{n \in \omega}$ converges to some point $x_d \in U_d$;
- for any compact sets $K_n \subset U_{d,n}$ the set $K_d = \{x_d\} \cup \bigcup_{n \in \omega} K_n$ is compact and has dimension $D(K_d) = \sup_{n \in \omega} D(K_n)$.

By our assumption, for every $d \in D$ and $n \in \omega$ we can find a compact subset $K_{d,n} \subset U_{d,n}$ with $D(K_{d,n}) \in (d]_{\Gamma}$. Using the homotopical density of the subspace $2_{<\omega}^X$ of finite subsets in 2^X , construct a map $\kappa_{d,n}: A \to 2^X$ such that $\kappa_{d,n}(a) = K_{d,n}$ for every $a \in A_{d,n}$ and $\kappa_{d,n}(a)$ is a finite subset of $U_{d,n}$ for every $a \in A \setminus A_{d,n}$.

Now for every $a \in A$ and $d \in D$ consider the compact subset

$$\kappa_d(a) = \{x_d\} \cup \bigcup_{n \in \omega} \kappa_{d,n}(a) \subset U_d$$

having dimension

$$D(\kappa_d(a)) = \sup_{a \in \mathcal{A}} D(\kappa_{d,n}(a)).$$

The choice of the sequence $\langle U_d \rangle_{d \in D}$ ensures that

$$\kappa(a) = \{x_{\infty}\} \cup \bigcup_{d \in D} \kappa_d(a)$$

is a compact subset of *U* with dimension

$$D(\kappa(a)) = \sup_{d \in \mathcal{D}} D(\kappa_d(a)) = \sup \{D(\kappa_{d,n}(a)) : d \in \mathcal{D}, n \in \omega\}.$$

It is easy to prove that the map

$$\kappa: A \to 2^U, \kappa: a \mapsto \kappa(a),$$

is continuous. It remains to check that $\kappa^{-1}(D_{>\gamma}(X)) = A_{\gamma}$ for all $\gamma \in \Gamma$.

If $a \in A \setminus A_{\gamma}$, then for every $d \geq \gamma$ in D the inclusion $a \in A \setminus A_d$ implies $\kappa_{d,n}(a) \in 2_{<\omega}^X$. In this case

$$D(\kappa_d(a)) \leq \sup_{n \in \mathcal{N}} \kappa_{d,n}(a) = 0 \leq \gamma.$$

On the other hand, for every $d < \gamma$ the inclusions $D(K_{d,n}) \in (d]_{\Gamma} \subset [0, \gamma]$, $n \in \omega$, and the choice of the sequence $(U_{d,n})_{n \in \omega}$ imply $D(\kappa_d(a)) \leq \sup_{n \in \omega} D(\kappa_{d,n}(a)) \leq \gamma$.

Now the choice of the sequence $\langle U_d \rangle_{d \in D}$ guarantees that

$$D(\kappa(a)) \le \sup_{d \in D} D(\kappa_d(a)) \le \gamma$$

and hence

$$\kappa(a) \in D_{\leq \gamma}(X) = 2^X \setminus D_{>\gamma}(X).$$

Now assume that $a \in A_{\gamma}$ and hence $a \in A_{\gamma,n}$ for some $n \in \omega$. If $\gamma < \inf(\Gamma_{>\gamma})$, then $\gamma \in D$ and $D(K_{\gamma,n}) \in (\gamma]_{\Gamma} = (\gamma,\inf(\Gamma_{>\gamma})]$. Since $K_{\gamma,n} \subset \kappa(a)$, we conclude that $D(\kappa(a)) \geq D(K_{\gamma,n}) > \gamma$ and thus $\kappa(a) \in D_{>\gamma}(X)$.

Next, assume that $\gamma = \inf(\Gamma_{>\gamma})$. In this case $\gamma = \inf(D_{>\gamma})$ and hence $A_{\gamma} = \bigcup_{d \in D_{>\gamma}} A_d$. It follows that $a \in A_{d,n}$ for some $d \in D_{>\gamma}$ and $n \in \omega$. Since $\kappa(a) \supset K_{d,n}$ and $D(K_{d,n}) \in (d]_{\Gamma} \subset (\gamma, +\infty)$, we conclude that $D(\kappa(a)) \geq D(K_{d,n}) > \gamma$. So, again $\kappa(a) \in D_{>\gamma}(X)$. \square

The following characterization theorem implies Theorem 1 announced in the Introduction.

Theorem 9. Let X be a topological space, $D: 2^X_* \to [0, \infty]$ be a dimension function, and $\Gamma \subset [0, \infty)$ be a subset. The Γ -system $\langle 2^X, D_{>\nu}(X) \rangle_{\nu \in \Gamma}$ is homeomorphic to the model $\sigma \mathfrak{C}_{\Gamma}$ -absorbing Γ -system $\langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\geq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}}) \rangle_{\nu \in \Gamma}$ if and only if

- 1. X is a non-degenerate Peano continuum,
- 2. each space $D_{>\nu}(X)$, $\gamma \in \Gamma$, is σ -compact, and
- 3. each non-empty open set $U \subset X$ for every $\gamma \in \Gamma$ contains a compact subset $K \subset U$ with $D(K) \in (\gamma)_{\Gamma}$.

Proof. To prove the "only if" part, assume that the Γ -system $\mathscr{D} = \langle 2^X, D_{>\gamma}(X) \rangle_{\gamma \in \Gamma}$ is homeomorphic to the model Γ -system $\Sigma_{\Gamma} = \langle Q^{\mathbb{Q}}, Q^{\mathbb{Q}_{\geq \gamma}} \times B(Q^{\mathbb{Q}_{> \gamma}}) \rangle_{\gamma \in \Gamma}$. Since 2^X is homeomorphic to $Q^{\mathbb{Q}}$, we may apply the Curtis–Schori Theorem [1] and conclude that X is a non-degenerate Peano continuum. Since each space $\Sigma_{\gamma} = \mathbb{Q}^{\mathbb{Q} \leq \gamma} \times \mathcal{B}(\mathbb{Q}^{\mathbb{Q} > \gamma})$, $\gamma \in \Gamma$, is σ -compact, so is its topological copy $\mathbb{D}_{>\gamma}(X)$.

The Γ -system \mathscr{D} , being homeomorphic to the model $\sigma\mathfrak{C}_{\Gamma}$ -absorbing Γ -system Σ_{Γ} , is strongly $\sigma\mathfrak{C}_{\Gamma}$ -universal. Now Theorem 8 guarantees that for every $\gamma \in \Gamma$ each non-empty open subset $U \subset X$ contains a compact subset $K \subset U$ with $D(K) \in (\gamma)_{\Gamma}$.

Next, we prove the "if" part. Assume that the conditions (1)–(3) are satisfied. We shall prove that the Γ -system $\mathscr D$ is $\sigma \mathfrak{C}_{\Gamma}$ -absorbing. By the Curtis–Schori Theorem [1], the hyperspace 2^X is homeomorphic to the Hilbert cube Q. By Theorem 8, the Γ -system \mathscr{D} is strongly $\sigma \mathfrak{C}_{\Gamma}$ -universal. It is clear that this Γ -system is inf-continuous. By the condition (2), it is σ -compact. Hence $\mathscr{D} \in \sigma \mathfrak{C}_{\Gamma}$.

Let $D \subset \Gamma$ be a countable subset that meets each half-interval $[\gamma, \gamma + \varepsilon)$ where $\gamma \in \Gamma$ and $\varepsilon > 0$. It follows that $\bigcup_{\gamma \in \Gamma} D_{>\gamma}(X) = \bigcup_{\gamma \in D} D_{>\gamma}(X) \subset D_{>0}(X)$ is a σZ -set in 2^X , being a σ -compact subset of 2^X that has empty intersection with the homotopy dense subset $2_{<\omega}^X \subset D_{\leq 0}(X)$ on 2^X . So, we can find a countable sequence $\langle Z_n \rangle_{n \in \omega}$ of Z-sets in 2^X such that $\bigcup_{n \in \omega} Z_n \supset \bigcup_{\gamma \in \Gamma} D_{>\gamma}(X)$. Since $\mathscr{D} \in \sigma \mathfrak{C}_{\Gamma}$, we get $Z_n \cap \mathscr{D} \in \sigma \mathfrak{C}_{\Gamma}$ for all $n \in \omega$. This completes the proof of the $\sigma \mathfrak{C}_{\Gamma}$ -absorbing property of the Γ -system \mathscr{D} . Since 2^X is homeomorphic to the Hilbert cube, Theorem 6 ensures that \mathscr{D} is homeomorphic to the model Γ -system Σ_{Γ} . \square

6. Mean Value Theorem for Hausdorff dimension

In this section we shall prove Theorem 4. First, we recall shortly the definitions of the Hausdorff measure and dimension. Given a complete separable metric space E and two non-negative real numbers s, ε , consider the number

$$\mathcal{H}_{\varepsilon}^{s}(E) = \inf_{\mathcal{B}} \sum_{B \in \mathcal{B}} (\operatorname{diam} B)^{s},$$

where infimum is taken over all ε -covers \mathcal{B} of E, i.e. cover of E by sets of diameter $\leq \varepsilon$. Since X is separable, we can restrict ourselves by countable covers by closed subsets of diameter $< \varepsilon$.

The limit $\mathcal{H}^s(E) = \lim_{\epsilon \to 0} \mathcal{H}^s_{\epsilon}(E)$ is called the s-dimensional Hausdorff measure of E. It is known that there is a unique finite or infinite number $\dim_H(E)$ called the Hausdorff dimension of E and denoted by $\dim_H(E)$ such that $\mathcal{H}^s(E) = \infty$ for all $s < \dim_H(E)$ and $\mathcal{H}^s(E) = 0$ for all $s > \dim_H(E)$, see [13,14].

Let (X, d) be a separable complete metric space. Theorem 4 will be proved as soon as for every positive real number $s < \dim_H(X)$ we shall find a compact subset $K \subset X$ with Hausdorff dimension $\dim_H(K) = s$.

It follows from $s < \dim_H(E)$ that $\mathcal{H}^s(E) = \infty$ and there exists $0 < \delta < 1$ with

$$\mathcal{H}_{\delta}^{s}(E) = k_0 > \frac{\delta^{s}}{2^{s-1}} = \left(\frac{\delta}{2}\right)^{s} + \left(\frac{\delta}{4}\right)^{s} + \left(\frac{\delta}{8}\right)^{s} + \cdots. \tag{0}$$

We define inductively a decreasing sequence $\{E_i\}_{i=1}^{\infty}$ of closed subsets of E. Let $E_1 = E$. Consider $\mathcal{H}_{\delta/2}^{\mathcal{S}}(E_1)$. Two cases are possible (taking into account the definition of Hausdorff measure):

- $\mathcal{H}^s_{\delta/2}(E_1) = k_0$. In this case we take $E_2 = E_1$. $\mathcal{H}^s_{\delta/2}(E_1) > k_0$. Therefore we can choose a closed $\delta/2$ -cover $\{U_1, \ldots, U_{m_1}, \ldots\}$ of the set E_1 , (without loss of generality assume that this cover is ordered so that $diam(U_{i+1}) \leq diam(U_i)$ for all i), such that

$$\mathcal{H}_{\delta/2}^{s}(E_1) \le \sum_{i} (\operatorname{diam}(U_i))^{s} < \mathcal{H}_{\delta/2}^{s}(E_1) + (\delta/2)^{s}. \tag{1}$$

Find a finite number m_1 such that

$$k_0 \le \sum_{i=1}^{m_1} (\operatorname{diam}(U_i))^s \le k_0 + (\delta/2)^s.$$
 (2)

Then take $E_2 = \bigcup_{i=1}^{m_1} E_1 \cap U_i$.

Now we need to estimate $\mathcal{H}^s_{\delta/2}(E_2)$ (obviously the second case is interesting). For this we put $E_2' = \bigcup_{i>m_1} E_1 \cap U_i$ and note that

$$\mathcal{H}_{\delta/2}^{s}(E_1) \le \mathcal{H}_{\delta/2}^{s}(E_2) + \mathcal{H}_{\delta/2}^{s}(E_2'). \tag{3}$$

On the other hand

$$\sum_{i} (\text{diam}(U_i))^s = \sum_{i < m_1} (\text{diam}(U_i))^s + \sum_{i > m_1} (\text{diam}(U_i))^s.$$
(4)

Consider the real numbers

$$\varepsilon_1 = \sum_{i} (\operatorname{diam}(U_i))^s - \mathcal{H}_{\delta/2}^s(E_1),$$

$$\varepsilon_2 = \sum_{i=1}^{m_1} (\operatorname{diam}(U_i))^s - \mathcal{H}_{\delta/2}^s(E_2),$$

$$\varepsilon_2' = \sum_{i>m_1} (\operatorname{diam}(U_i))^s - \mathcal{H}_{\delta/2}^s(E_2')$$

and observe that $0 \le \varepsilon_1 < (\delta/2)^s$ by (1), and $\varepsilon_2, \varepsilon_2' \ge 0$. Therefore (3) and (4) yield $\varepsilon_1 \ge \varepsilon_2 + \varepsilon_2'$ and hence $0 \le \varepsilon_2 < (\delta/2)^s$. Taking into account (2), we have:

$$k_0 - (\delta/2)^s \le \mathcal{H}_{\delta/2}^s(E_2) \le k_0 + (\delta/2)^s.$$
 (5)

Now denote $\mathcal{H}^s_{\delta/2}(E_2) = k_1$. From (0) and (5) it follows that $0 < k_1 < \infty$. By the definition of Hausdorff measure we have $0 < \mathcal{H}^s(E_2) \le \infty$, that in turn implies $\dim_H(E_2) \ge s$. It allows us to make the following inductive step.

Consider now $\mathcal{H}^s_{\delta/4}(E_2)$. If $\mathcal{H}^s_{\delta/4}(E_2)=k_1$, then take $E_3=E_2$. If $\mathcal{H}^s_{\delta/4}(E_2)>k_1$, then similarly to the described above we find a closed $\delta/4$ -cover $\{U_1,\ldots,U_{m_2},\ldots\}$ of E_2 , such that

$$\mathcal{H}_{\delta/4}^{s}(E_2) \leq \sum_{i} (\operatorname{diam}(U_i))^{s} < \mathcal{H}_{\delta/4}^{s}(E_2) + (\delta/4)^{s}.$$

Find a finite number m_2 such that

$$k_1 \le \sum_{i=1}^{m_2} (\operatorname{diam}(U_i))^s \le k_1 + (\delta/4)^s.$$

Let $E_3 = \bigcup_{i=1}^{m_2} E_2 \cap U_i$. As above, we can to estimate $\mathcal{H}_{\delta/4}^s(E_3)$. We obtain:

$$k_1 - (\delta/4)^s \le \mathcal{H}_{\delta/4}^s(E_3) \le k_1 + (\delta/4)^s.$$

Or, taking into account (5):

$$k_0 - (\delta/2)^s - (\delta/4)^s \le \mathcal{H}_{\delta/4}^s(E_3) \le k_0 + (\delta/2)^s + (\delta/4)^s$$
.

Again we can state that $\dim_H(E_3) \geq s$ and continue inductive process by constructing in similar way

$$E_4, E_5, \ldots E_n, \ldots,$$

for which we obtain in general case the estimate:

$$k_0 - (\delta/2)^s - \dots - (\delta/2^{n-1})^s \le \mathcal{H}_{\delta/2^{n-1}}^s(E_n) \le k_0 + (\delta/2)^s + \dots + (\delta/2^{n-1})^s.$$
(6)

It follows that $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$ is a decreasing sequence of closed subsets of X with compact intersection $K = \lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n$. Using the continuity of the measure \mathcal{H}^s we obtain:

$$\mathcal{H}^{s}(K) = \lim_{n \to \infty} \mathcal{H}^{s}(E_{n}) = \lim_{n \to \infty} \lim_{i \to \infty} \mathcal{H}^{s}_{\delta/2^{i-1}}(E_{n}) = \lim_{n \to \infty} \mathcal{H}^{s}_{\delta/2^{n-1}}(E_{n}).$$

Additionally using (6) we obtain the estimate:

$$k_0 - \frac{\delta^s}{2^{s-1}} \le \mathcal{H}^s(F) \le k_0 + \frac{\delta^s}{2^{s-1}}.$$

Taking into account (0) we can state that $\dim_H(F) = s$.

References

- [1] D.W. Curtis, R.M. Schori, Hyperspaces of peano continua are Hilbert cubes, Fund. Math. 101 (1978) 19-38.
- [2] D.W. Curtis, Hyperspaces of noncompact metric spaces, Compos. Math. 40 (1980) 139-152.

- [3] T. Dobrowolski, L. Rubin, The hyperspace of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994) 15-39.
- [4] H. Gladdines, Absorbing Systems in Infinite-Dimensional Manifolds and Applications, Vrije Universiteit, Amsterdam, 1994.
- [5] R. Cauty, Suites \mathcal{F}_{σ} -absorbantes en théorie de la dimension, Fund. Math. 159 (1999) 115–126.
- [6] N. Mazurenko, Absorbing sets related to Hausdorff dimension, Visnyk Lviv Univ., Ser. Mech-Math. 61 (2003) 121-128.
- [7] N. Mazurenko, Uncountable absorbing systems related to the Hausdorff dimension, Mat. Stud. 31 (2009) 195–203.
- [8] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
 [9] J.J. Dijkstra, J. van Mill, J. Mogilski, The space of infinite-dimensional compacta and other topological copies of (l²_f)^ω, Pacific J. Math. 152 (1992) 255–273.
- [10] J. van Mill, Infinite-Dimensional Topology, Vrije Universiteit, Amsterdam, 1989.
 [11] T.A. Chapman, Lectures on Hilbert Cube Manifolds, in: CBMS, vol. 28, AMS, Providence, 1975.
- [12] T. Banakh, T. Radul, M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, in: Monograph Series, vol. 1, VNTL Publ., Lviv, 1996.
- [13] G. Edgar, Measure, Topology and Fractal Geometry, Springer, New York, 1995.
- [14] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.