2,304 research outputs found

    Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?

    Full text link
    We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial'' origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.Comment: 10 pages, 7 figures, accepted for publication in A&A. Figures with higher resolution are available at www.iac.es/proyect/abuntes

    On the functional form of the metallicity-giant planet correlation

    Full text link
    It is generally accepted that the presence of a giant planet is strongly dependent on the stellar metallicity. A stellar mass dependence has also been investigated, but this dependence does not seem as strong as the metallicity dependence. Even for metallicity, however, the exact form of the correlation has not been established. In this paper, we test several scenarios for describing the frequency of giant planets as a function of its host parameters. We perform this test on two volume-limited samples (from CORALIE and HARPS). By using a Bayesian analysis, we quantitatively compared the different scenarios. We confirm that giant planet frequency is indeed a function of metallicity. However, there is no statistical difference between a constant or an exponential function for stars with subsolar metallicities contrary to what has been previously stated in the literature. The dependence on stellar mass could neither be confirmed nor be discarded.Comment: 5 pages, 2 figures, accepted in A&

    Comparing HARPS and Kepler surveys: The alignment of multiple-planet systems

    Full text link
    Aims. We study a subset of the planetary population characterized both by HARPS and Kepler surveys. We compare the statistical properties of planets in systems with m.sin i >5-10 M_Earth and R>2 R_Earth. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods. We considered the frequency of systems with one, two and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radii distributions (corrected from detection bias) to model planetary systems in a simple yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions and isotropic) and compared the transit frequencies with one, two or three planets with those measured by Kepler. Results. The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For m.sin i cutoffs of 7-10 M_Earth, which are those expected to correspond to the radius cutoff of 2 R_Earth, we conclude that the results are better described by a Rayleigh distribution with mode of 1 deg or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with mode of 5 deg if we assume a rather extreme mass-radius relationship for the planetary population. Conclusions. These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges (abridged).Comment: 10 pages, 6 figures, 4 tables, accepted for publication in Astronomy & Astrophysic

    Radial Velocities with CRIRES: Pushing precision down to 5-10 m/s

    Full text link
    With the advent of high-resolution infrared spectrographs, Radial Velocity (RV) searches enter into a new domain. As of today, the most important technical question to address is which wavelength reference is the most suitable for high-precision RV measurements. In this work we explore the usage of atmospheric absorption features. We make use of CRIRES data on two programs and three different targets. We re-analyze the data of the TW Hya campaign, reaching a dispersion of about 6 m/s on the RV standard in a time scale of roughly 1 week. We confirm the presence of a low-amplitude RV signal on TW Hya itself, roughly 3 times smaller than the one reported at visible wavelengths. We present RV measurements of Gl 86 as well, showing that our approach is capable of detecting the signal induced by a planet and correctly quantifying it. Our data show that CRIRES is capable of reaching a RV precision of less than 10 m/s in a time-scale of one week. The limitations of this particular approach are discussed, and the limiting factors on RV precision in the IR in a general way. The implications of this work on the design of future dedicated IR spectrographs are addressed as well.Comment: 9 pages, accepted for publication in A&

    Myosin II filament dynamics in actin networks revealed with interferometric scattering microscopy

    Get PDF
    The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood due to difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering (iSCAT) microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane. Using the magnitude of the interferometric contrast, which is proportional to molecular mass, and fast acquisition rates, we detect, and image individual membrane attached actin filaments diffusing within the acto-myosin network and follow individual myosin II filament dynamics. We quantify myosin II filament dwell times and processivity as functions of ATP concentration, providing experimental evidence for the predicted ensemble behavior of myosin head domains. Our results show how decreasing ATP concentrations lead to both increasing dwell times of individual myosin II filaments and a global change from a remodeling to a contractile state of the acto-myosin network

    The HARPS search for Earth-like planets in the habitable zone: I -- Very low-mass planets around HD20794, HD85512 and HD192310

    Full text link
    In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 minutes each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD20794, HD85512, and HD192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 Earth-mass planet at the inner edge of the habitable zone. This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%Comment: 18 pages, 22 figures, accepted by A&A on 15/08/2011 with reference AA/2011/17055. Radial velocity data will be available through CD

    A pair of planets around HD 202206 or a circumbinary planet?

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph reveal the presence of a second planet orbiting the solar-type star HD202206. The radial-velocity combined fit yields companion masses of m_2\sini = 17.4 M_Jup and 2.44 M_Jup, semi-major axes of a = 0.83 AU and 2.55 AU, and eccentricities of e = 0.43 and 0.27, respectively. A dynamical analysis of the system further shows a 5/1 mean motion resonance between the two planets. This system is of particular interest since the inner planet is within the brown-dwarf limits while the outer one is much less massive. Therefore, either the inner planet formed simultaneously in the protoplanetary disk as a superplanet, or the outer Jupiter-like planet formed in a circumbinary disk. We believe this singular planetary system will provide important constraints on planetary formation and migration scenarios.Comment: 9 pages, 14 figures, accepted in A&A, 12-May-200

    The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b

    Get PDF
    We present Spitzer Space Telescope time series photometry of the exoplanet system HD 189733 spanning two times of secondary eclipse, when the planet passes out of view behind the parent star. We estimate the relative eclipse depth in 5 distinct bands and find the planet-to-star flux ratio to be 0.256 +/- 0.014% (3.6 microns), 0.214 +/- 0.020% (4.5 microns), 0.310 +/- 0.034% (5.8 microns), 0.391 +/- 0.022% (8.0 microns), and 0.598 +/- 0.038% (24 microns). For consistency, we re-analyze a previously published time series to deduce a contrast ratio in an additional band, 0.519 +/- 0.020% (16 microns). Our data are strongly inconsistent with a Planck spectrum, and we clearly detect emission near 4 microns as predicted by published theoretical models in which this feature arises from a corresponding opacity window. Unlike recent results for the exoplanet HD 209458b, we find that the emergent spectrum from HD 189733b is best matched by models that do not include an atmospheric temperature inversion. Taken together, these two studies provide initial observational support for the idea that hot Jupiter atmospheres diverge into two classes, in which a thermal inversion layer is present for the more strongly irradiated objects.Comment: 20 pages, 3 figures, accepted to the Astrophysical Journal, minor revision
    • …
    corecore