408 research outputs found

    The redshifted network contrast of transition region emission

    Full text link
    Aims: We study the VUV emission of the quiet Sun and the net redshift of transition region lines in the SUMER spectral range. We aim at establishing a link with atmospheric processes and interpreting the observed downflow as the most evident part of the prevailing global coronal mass transport. Methods: We rank and arrange all pixels of a monochromatic raster scan by radiance and define equally-sized bins of bright, faint, and medium-bright pixels. Comparing the bright pixels with the faint pixels, we determine the spectrally-resolved network contrast for 19 emission lines. We then compare the contrast centroids of these lines with the position of the line itself. We establish a relationship between the observed redshift of the network contrast with the line formation temperature. Results: We find that the network contrast is offset in wavelength compared to the emission line itself. This offset, if interpreted as redshift, peaks at middle transition region temperatures and is 10 times higher than the previously reported net redshift of transition region emission lines. We demonstrate that the brighter pixels are more redshifted, causing both a significant shift of the network contrast profile and the well-known net redshift. We show that this effect can be reconstructed from the radiance distribution. This result is compatible with loop models, which assume downflows near both footpoints.Comment: 5 pages, 4 figure

    Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence

    Get PDF
    In this paper we calculate Kolmogorov's constant for magnetohydrodynamic turbulence to one loop order in perturbation theory using the direct interaction approximation technique of Kraichnan. We have computed the constants for various Eu(k)/Eb(k)E^u(k)/E^b(k), i.e., fluid to magnetic energy ratios when the normalized cross helicity is zero. We find that KK increases from 1.47 to 4.12 as we go from fully fluid case (Eb=0)(E^b=0) to a situation when Eu/Eb=0.5% E^u/E^b=0.5, then it decreases to 3.55 in a fully magnetic limit (Eu=0)(E^u=0). When Eu/Eb=1E^u/E^b=1, we find that K=3.43K=3.43.Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199

    On the nature of spectral line broadening in solar coronal dimmings

    Full text link
    We analyze the profiles of iron emission lines observed in solar coronal dimmings associated with coronal mass ejections, using the EUV Imaging Spectrometer on board Hinode. We quantify line profile distortions with empirical coefficients (asymmetry and peakedness) that compare the fitted Gaussian to the data. We find that the apparent line broadenings reported in previous studies are likely to be caused by inhomogeneities of flow velocities along the line of sight, or at scales smaller than the resolution scale, or by velocity fluctuations during the exposure time. The increase in the amplitude of Alfv\'en waves cannot, alone, explain the observed features. A double-Gaussian fit of the line profiles shows that, both for dimmings and active region loops, one component is nearly at rest while the second component presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap

    Wave instabilities in an anisotropic magnetized space plasma

    Full text link
    We study wave instability in an collisionless, rarefied hot plasma (e.g. solar wind or corona). We consider the anisotropy produced by the magnetic field, when the thermal gas pressures across and along the field become unequal. We apply the 16-moment transport equations (obtained from the Boltzmann-Vlasov kinetic equation) including the anisotropic thermal fluxes. The general dispersion relation for the incompressible wave modes is derived. It is shown that a new, more complex wave spectrum with stable and unstable behavior is possible, in contrast to the classic fire-hose modes obtained in terms of the 13-moment integrated equations.Comment: 5 pages, length reduced to that of a Research Note, A&A (in press

    On active region loops: Hinode/EIS observations

    Full text link
    Coronal loops are fundamental building blocks of the solar active regions and the corona. Therefore, a clear understanding of the physics of coronal loops will help us understand the physics of active region heating in particular and coronal heating in general. This requires a precise measurement of physical quantities such as electron densities and filling factors, temperatures, and flows in coronal loops. In this paper we have carried out an investigation of a spatially well resolved coronal loop using the EIS onboard Hinode to measure the above mentioned physical quantities. Based on this study we find that a nano-flare model could explain most of the observed characteristics of this loop.Comment: 27 pages, 7 figures, Accepted in Ap

    The quiet Sun average Doppler shift of coronal lines up to 2 MK

    Full text link
    The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. Here we analyse combined SUMER/SoHO and EIS/Hinode observations of the quiet Sun around disk centre to determine, for the first time, the average Doppler shift of several spectral lines formed between 1 and 2 MK, where the largest part of the quiet coronal emission is formed. The measurements are based on a novel technique applied to EIS spectra to measure the difference in Doppler shift between lines formed at different temperatures. Simultaneous wavelength-calibrated SUMER spectra allow establishing the absolute value at the reference temperature of 1 MK. The average line shifts at 1 MK < T < 1.8 MK are modestly, but clearly bluer than those observed at 1 MK. By accepting an average blue shift of about (-1.8+/-0.6) km/s at 1 MK (as provided by SUMER measurements), this translates into a maximum Doppler shift of (-4.4+/-2.2) km/s around 1.8 MK. The measured value appears to decrease to about (-1.3+/-2.6) km/s at the Fe XV formation temperature of 2.1 MK. The measured average Doppler shift between 0.01 and 2.1 MK, for which we provide a parametrisation, appears to be qualitatively and roughly quantitatively consistent with what foreseen by 3-D coronal models where heating is produced by dissipation of currents induced by photospheric motions and by reconnection with emerging magnetic flux.Comment: 9 pages, 10 figures. Astronomy and Astrophysics (in press

    ASYMMETRIC LEAVES2-LIKE1gene a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals

    Get PDF
    The formation and the development of the floral organs require an intercalate expression of organ-specific genes. At the same time, meristem-specific genes are repressed to complete the differentiation of the organs in the floral whorls. In an Arabidopsis activation tagging population, a mutant affected in inflorescence architecture was identified. This gain-of-function mutant, designateddownwards siliques1 (dsl1-D), has shorter internodes and the lateral organs such as flowers are bending downwards, similar to the loss-of-function brevipedicellus (bp) mutant. The affected gene in dsl1-D appeared to be ASYMMETRIC LEAVES2-LIKE1 (ASL1)/LATERAL ORGAN BOUNDARIESdomain gene 36 (LBD36), which is a member of the ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. Analysis of the loss-of-function mutant asl1/lbd36 did not show morphological aberration. Double mutant analysis of asl1/lbd36 together with as2, the ASL1/LBD36 closest homologue, demonstrates that these two members of the AS2/LOB family act partially redundant to control cell fate determination in Arabidopsis petals. Moreover, molecular analysis revealed that overexpression of ASL1/LBD36 leads to repression of the homeobox gene BP, which supports the model that an antagonistic relationship between ASL/LBD and homeobox members is required for the differentiation of lateral organ

    How to use magnetic field information for coronal loop identification?

    Full text link
    The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g. potential fields (current free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.Comment: 14 pages, 3 figure

    Alfv\'en Reflection and Reverberation in the Solar Atmosphere

    Full text link
    Magneto-atmospheres with Alfv\'en speed [a] that increases monotonically with height are often used to model the solar atmosphere, at least out to several solar radii. A common example involves uniform vertical or inclined magnetic field in an isothermal atmosphere, for which the Alfv\'en speed is exponential. We address the issue of internal reflection in such atmospheres, both for time-harmonic and for transient waves. It is found that a mathematical boundary condition may be devised that corresponds to perfect absorption at infinity, and, using this, that many atmospheres where a(x) is analytic and unbounded present no internal reflection of harmonic Alfv\'en waves. However, except for certain special cases, such solutions are accompanied by a wake, which may be thought of as a kind of reflection. For the initial-value problem where a harmonic source is suddenly switched on (and optionally off), there is also an associated transient that normally decays with time as O(t-1) or O(t-1 ln t), depending on the phase of the driver. Unlike the steady-state harmonic solutions, the transient does reflect weakly. Alfv\'en waves in the solar corona driven by a finite-duration train of p-modes are expected to leave such transients.Comment: Accepted by Solar Physic

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc
    corecore