170 research outputs found

    Distinct in vitro binding properties of the anti-CD20 small modular immunopharmaceutical 2LM20-4 result in profound and sustained in vivo potency in cynomolgus monkeys

    Get PDF
    Objectives. To characterize the in vitro binding and effector function properties of CD20-directed small modular immunopharmaceutical (SMIP) 2LM20-4, and to compare its in vivo B-cell depletion activity with the mutated 2LM20-4 P331S [no in vitro complement-dependent cytotoxicity (CDC)] and rituximab in cynomolgus monkeys

    The C313Y Piedmontese mutation decreases myostatin covalent dimerisation and stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myostatin is a key negative regulator of muscle growth and development, whose activity has important implications for the treatment of muscle wastage disorders. Piedmontese cattle display a double-muscled phenotype associated with the expression of C313Y mutant myostatin. <it>In vivo</it>, C313Y myostatin is proteolytically processed, exported and circulated extracellularly but fails to correctly regulate muscle growth. The C313Y mutation removes the C313-containing disulphide bond, an integral part of the characteristic TGF-β cystine-knot structural motif.</p> <p>Results</p> <p>Here we present <it>in vitro </it>analysis of the structure and stability of the C313Y myostatin protein that reveals significantly decreased covalent dimerisation for C313Y myostatin accompanied by a loss of structural stability compared to wild type. The C313Y myostatin growth factor, processed from full length precursor protein, fails to inhibit C2C12 myoblast proliferation in contrast to wild type myostatin. Although structural modeling shows the substitution of tyrosine causes structural perturbation, biochemical analysis of additional disulphide mutants, C313A and C374A, indicates that an intact cystine-knot motif is a major determinant in myostatin growth factor stability and covalent dimerisation.</p> <p>Conclusions</p> <p>This research shows that the cystine-knot structure is important for myostatin dimerisation and stability, and that disruption of this structural motif perturbs myostatin signaling.</p

    An Overview of the Management of Flexor Tendon Injuries

    Get PDF
    Flexor tendon injuries still remain a challenging condition to manage to ensure optimal outcome for the patient. Since the first flexor tendon repair was described by Kirchmayr in 1917, several approaches to flexor tendon injury have enabled successful repairs rates of 70-90%. Primary surgical repair results in better functional outcome compared to secondary repair or tendon graft surgery. Flexor tendon injury repair has been extensively researched and the literature demonstrates successful repair requires minimal gapping at the repair site or interference with tendon vascularity, secure suture knots, smooth junction of tendon end and having sufficient strength for healing. However, the exact surgical approach to achieve success being currently used among surgeons is still controversial. Therefore, this review aims to discuss the results of studies demonstrating the current knowledge regarding the optimal approach for flexor tendon repair. Post-operative rehabilitation for flexor tendon surgery is another area, which has caused extensive debate in hand surgery. The trend to more active mobilisation protocols seems to be favoured but further study in this area is needed to find the protocol, which achieves function and gliding but avoids rupture of the tendons. Lastly despite success following surgery complications commonly still occur post surgery, including adhesion formation, tendon rupture and stiffness of the joints. Therefore, this review aims to discuss the appropriate management of these difficulties post surgery. New techniques in management of flexor tendon will also be discussed including external laser devices, addition of growth factors and cytokines

    Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation

    Get PDF
    Apoptosis rather than differentiation is a physiological process during myogenesis and muscle regeneration. When cultured myoblasts were induced to differentiate, we detected an increase in caspase 8 activity. Pharmacological inhibition of caspase 8 activity decreased apoptosis. Expression of a dominant-negative mutant of the adapter protein FADD also abrogated apoptosis, implicating a death ligand pathway. Treatment with TRAIL, but not Fas, induced apoptosis in these myoblasts. Accordingly, treatment with a soluble TRAIL decoy receptor or expression of a dominant-negative mutant of the TRAIL receptor DR5 abrogated apoptosis. While TRAIL expression levels remained unaltered in apoptotic myoblasts, DR5 expression levels increased. Finally, we also detected a reduction in FLIP, a death-receptor effector protein and caspase 8 competitive inhibitor, to undetectable levels in apoptotic myoblasts. Thus, our data demonstrate an important role for the TRAIL/DR5/FADD/caspase 8 pathway in the apoptosis associated with skeletal myoblast differentiation. Identifying the functional apoptotic pathways in skeletal myoblasts may prove useful in minimizing the myoblast apoptosis that contributes pathologically to a variety of diseases and in minimizing the apoptosis of transplanted myoblasts to treat these and other disease states

    Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion

    Get PDF
    Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10−6). Novel reciprocal case–control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present

    The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks

    Full text link
    corecore