741 research outputs found

    The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft

    Full text link
    We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the YZ plane in MSE coordinate system (θ{\theta} E ). All passes were divided into 3 angular sectors near 0{\deg}, 90{\deg} and 180{\deg} θ{\theta} E angles in order to estimate the role of IMF direction in plasma and magnetic properties of dayside Martian magnetosphere. The time interval chosen was from January 17 through February 4, 2016 when MAVEN was crossing the dayside magnetosphere at SZA ~ 70{\deg}. Magnetosphere as the region with prevailing energetic planetary ions is always found between the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction region in MSE coordinate system with different orientation of the solar wind electric field vector E = -1/c V x B showed that for each sector one can find specific profiles of the magnetosheath, the magnetic barrier and the magnetosphere. Plume ions originate in the northern MSE sector where motion electric field is directed from the planet. This electric field ejects magnetospheric ions leading to dilution of magnetospheric heavy ions population, and this effect is seen in some magnetospheric profiles. Magnetic barrier forms in front of the magnetosphere, and relative magnetic field magnitudes in these two domains vary. The average height of the boundary with ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We discuss the implications of the observed magnetosphere structure to the planetary ions loss mechanism.Comment: 24 pages, 13 figure

    On the electronic properties of GaSb irradiated with reactor neutrons and its charge neutrality level

    Get PDF
    The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 1018 cm−2 are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p lim = (5−6) × 1018 cm−3 and in pinning of the Fermi level at the limiting position F lim close to E V + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°C is explored

    Lateral distribution of high energy muons in EAS of sizes Ne approximately equals 10(5) and Ne approximately equals 10(6)

    Get PDF
    Muon energy spectra and muon lateral distribution in EAS were investigated with the underground magnetic spectrometer working as a part of the extensive air showers (EAS) array. For every registered muon the data on EAS are analyzed and the following EAS parameters are obtained, size N sub e, distance r from the shower axis to muon, age parameter s. The number of muons with energy over some threshold E associated to EAS of fixed parameters are measured, I sub reg. To obtain traditional characteristics, muon flux densities as a function of the distance r and muon energy E, muon lateral distribution and energy spectra are discussed for hadron-nucleus interaction model and composition of primary cosmic rays

    Optical response of a cold-electron bolometer array

    Get PDF
    A multielement bolometric receiver system has been developed to measure the power and polarization of radiation at a calculated frequency of 345 GHz. Arrays of ten series-parallel connected cold-electron bolometers have been pairwise integrated into orthogonal ports of a cross-slot antenna. Arrays are connected in parallel in the high-frequency input signal and in series in the output signal, which is measured at a low frequency, and in a dc bias. Such an array makes it possible to increase the output resistance by two orders of magnitude as compared to an individual bolometer under the same conditions of high-frequency matching and to optimize the matching with the JFET amplifier impedance up to dozens of megohms. Parallel connection ensures matching of the input signal to the cross-slot antenna with an impedance of 30 Omega on a massive silicon dielectric lens. At a temperature of 100 mK, a response to the thermal radiation of a thermal radiation source with an emissivity of 0.3, which covers the input aperture of the antenna and is heated to 3 K, is 25 mu V/K. Taking into account real noise, the optical fluctuation dc sensitivity is 5 mK, the estimated sensitivity corresponding to the noise of the amplifier is about 10(-4) K/Hz(1/2), and the noise-equivalent power is about (1-5) x 10(-17) W/Hz(1/2)

    Resonant enhancement of the jump rate in a double-well potential

    Full text link
    We study the overdamped dynamics of a Brownian particle in the double-well potential under the influence of an external periodic (AC) force with zero mean. We obtain a dependence of the jump rate on the frequency of the external force. The dependence shows a maximum at a certain driving frequency. We explain the phenomenon as a switching between different time scales of the system: interwell relaxation time (the mean residence time) and the intrawell relaxation time. Dependence of the resonant peak on the system parameters, namely the amplitude of the driving force A and the noise strength (temperature) D has been explored. We observe that the effect is well pronounced when A/D > 1 and if A/D 1 the enhancement of the jump rate can be of the order of magnitude with respect to the Kramers rate.Comment: Published in J. Phys. A: Math. Gen. 37 (2004) 6043-6051; 6 figure

    The Equivalence Postulate of Quantum Mechanics

    Get PDF
    The Equivalence Principle (EP), stating that all physical systems are connected by a coordinate transformation to the free one with vanishing energy, univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories depend on the Planck length through hidden variables which arise as initial conditions. The formulation has manifest p-q duality, a consequence of the involutive nature of the Legendre transform and of its recently observed relation with second-order linear differential equations. This reflects in an intrinsic psi^D-psi duality between linearly independent solutions of the Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even for bound states. No use of any axiomatic interpretation of the wave-function is made. Tunnelling is a direct consequence of the quantum potential which differs from the usual one and plays the role of particle's self-energy. The QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of the extended real line. This is an important feature as the L^2 condition, which in the usual formulation is a consequence of the axiomatic interpretation of the wave-function, directly follows as a basic theorem which only uses the geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP. As a result, the EP itself implies a dynamical equation that does not require any further assumption and reproduces both tunnelling and energy quantization. Several features of the formulation show how the Copenhagen interpretation hides the underlying nature of QM. Finally, the non-stationary higher dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the action of SL(2,R) subgroups acting on the reduced action explicitly reveals that the wave-function describes only equivalence classes of Planck length deterministic physics. New derivation of the Schwarzian derivative from the cocycle condition. "Legendre brackets" introduced to further make "Legendre duality" manifest. Introduction now contains examples and provides a short pedagogical review. Clarifications, conclusions, ackn. and references adde

    Backlund transformations for many-body systems related to KdV

    Get PDF
    We present Backlund transformations (BTs) with parameter for certain classical integrable n-body systems, namely the many-body generalised Henon-Heiles, Garnier and Neumann systems. Our construction makes use of the fact that all these systems may be obtained as particular reductions (stationary or restricted flows) of the KdV hierarchy; alternatively they may be considered as examples of the reduced sl(2) Gaudin magnet. The BTs provide exact time-discretizations of the original (continuous) systems, preserving the Lax matrix and hence all integrals of motion, and satisfy the spectrality property with respect to the Backlund parameter.Comment: LaTeX2e, 8 page
    corecore