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BÄCKLUND TRANSFORMATIONS FOR MANY-BODY

SYSTEMS RELATED TO KDV

A.N.W. HONE, V.B. KUZNETSOV, AND O. RAGNISCO

Abstract. We present Bäcklund transformations (BTs) with parameter for
certain classical integrable n-body systems, namely the many-body generalised
Hénon-Heiles, Garnier and Neumann systems. Our construction makes use of
the fact that all these systems may be obtained as particular reductions (sta-
tionary or restricted flows) of the KdV hierarchy; alternatively they may be
considered as examples of the reduced sl(2) Gaudin magnet. The BTs pro-
vide exact time-discretizations of the original (continuous) systems, preserving
the Lax matrix and hence all integrals of motion, and satisfy the spectrality

property with respect to the Bäcklund parameter.

1. Introduction

Bäcklund transformations (BTs) are an important aspect of the theory of inte-
grable systems which have traditionally been studied in the context of evolution
equations. However, more recently there has been much interest in discrete sys-
tems or integrable mappings [1, 17]. Within the modern approach to separation
of variables (reviewed by Sklyanin in [16]) this has led to the study of BTs for
finite-dimensional Hamiltonian systems [12]. The latter are canonical transforma-
tions including a Bäcklund parameter λ, and apart from being interesting integrable
mappings in their own right they also lead to separation of variables when n such
mappings are applied to an integrable system with n degrees of freedom. The se-
quence of Bäcklund parameters λj together with a set of conjugate variables µj

constitute the separation variables, and satisfy a new property called spectrality

introduced in [12].
We proceed to develop these ideas with some new examples of BTs for n-body

systems, namely the many-body generalisation of the case (ii) integrable Hénon-
Heiles system, the Garnier system and the Neumann system on the sphere (see [4]).
It is known that the case (ii) Hénon-Heiles system is equivalent to the stationary
flow of fifth-order KdV [5], while the Garnier and Neumann systems may be ob-
tained as restricted flows of the KdV hierarchy [19]. Thus we derive BTs for these
systems by reduction of the standard BT for KdV, which arises from the Darboux-
Crum transformation [3] for Schrödinger operators. The restriction of the Darboux
transformation to the stationary flows of the modified (mKdV) hierarchy has been
discussed in [6].

In the following section we describe how the reduction works in general, before
specialising these considerations to each particular system and presenting the asso-
ciated generating function for the BT. We note that these systems are examples of
the reduced Gaudin magnet [4], so that we have the following Lax matrix

L(u) =

n
∑

j=1

ℓj

u− aj

+B(u), ℓj =

(

S3
j S−

j

S+
j −S3

j

)

(1.1)

where (up to scaling) the Sj satisfy n independent copies of the standard sl(2)
algebra:

{S3
j , S

±

k } = ±2δjkS
±

k , {S+
j , S

−

k } = 4δjkS
3
k.(1.2)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/20523987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/solv-int/9904003v1
http://arXiv.org/abs/solv-int/9904003


2 A.N.W. HONE, V.B. KUZNETSOV, AND O. RAGNISCO

For the Hénon-Heiles and Garnier systems the matrix B(u) is respectively qua-
dratic and linear in the spectral parameter u, while for the Neumann system it
is independent of u and turns out to be constant due to the constraint that the
particles lie on the sphere (hence the Poisson algebra (1.2) must be modified by
Dirac reduction).

We have constructed the BT for the (non-reduced) sl(2) Gaudin magnet with
quasi-periodic boundary condition in [10], while some preliminary results on the
classical Garnier system and two-body Hénon-Heiles system first appeared in [8].

2. Classical integrable systems and KdV

2.1. Restricting the BT. As is well known, the Darboux-Crum transformation
[3] consists of mapping the Schrödinger operator ∂2

t + V − λ to another operator

∂2
t + Ṽ − λ by factorizing the former and then reversing the order of factorisation.

Given an eigenfunction φ satisfying

(∂2
t + V − λ)φ = 0

we may set y = (log[φ])t and then

V = −yt − y2 + λ, Ṽ = yt − y2 + λ;(2.1)

for λ = 0 this is just the Miura map for KdV. Also given another eigenfunction ψ

of the Schrödinger operator with potential V for a different spectral parameter u
we have

(∂2
t + V − u)ψ = 0, (∂2

t + Ṽ − u)ψ̃ = 0

where the transformation to the new eigenfunction ψ̃ and its derivative may be
given in matrix form as

(

ψ̃t

ψ̃

)

= k

(

−y y2 + u− λ

1 −y

)(

ψt

ψ

)

(2.2)

for any constant k. From (2.1) follows the standard formula for the Darboux-

Bäcklund transformation of KdV, Ṽ = V + 2(log[φ])tt.
For what follows it will also be necessary to consider a product of eigenfunctions

for a Schrödinger operator with potential V and eigenvalue u,

f = ψψ′

with Wronskian ψtψ
′ − ψψ′

t = 2m. It is well known that f satisfies the Ermakov-
Pinney equation [2]

fftt −
1

2
f2

t + 2(V − u)f2 + 2m2 = 0.(2.3)

If we now transform ψ and ψ′ according to (2.2) then we find a new product of

eigenfunctions f̃ = ψ̃ψ̃′ satisfying the same Ermakov-Pinney equation but with V

replaced by Ṽ , given explicitly by

f̃ = (λ− u)−1 (Z2 −m2)

f
, Z =

1

2
ft − yf,(2.4)

where we have set k2 = (λ − u)−1 to ensure that the transformed eigenfunctions
have the same Wronskian 2m. It is also straightforward to show that, in terms of
f̃ , the quantity Z can be written as Z = − 1

2
f̃t − yf̃ (see [9]).

We can now describe how this transformation restricts to the finite-dimensional
Hamiltonian systems presented below. The systems are expressed in variables
(qj , pj) which appear in the Lax matrix (1.1) via the identification [11, 4]

S3
j = pjqj , S−

j = −p2
j +

m2
j

q2j
, S+

j = q2j .
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For Hénon-Heiles and Garnier the non-vanishing Poisson brackets are the standard
ones {pj, qk} = δjk which provide a realization of the algebra (1.2); for the Neumann
system on the sphere the bracket must be modified by Dirac reduction.

All of the systems are Liouville integrable, and thus have a complete set of Hamil-
tonians in involution, but for these purposes we concentrate on the Hamiltonian
h generating the flow corresponding to t above (in KdV theory this is usually de-
noted x, the spatial variable). For this flow the Lax equation Lt = [N,L] is the
compatibility condition for the linear system

L(u)Ψ = vΨ, Ψt = NΨ; N =

(

0 u− V (qj , pj)
1 0

)

.(2.5)

Observe that the second part of the linear system is just a Schrödinger equation
for the potential V ; for Neumann and Garnier this is a function of (qj , pj) for
j = 1, . . . , n, while for Hénon-Heiles there is an extra pair of conjugate variables
(qn+1, pn+1) such that V ≡ qn+1.

The equations of motion generated by this Hamiltonian take the form qj,t = pj

and

pj,t = qj,tt = (aj − V (qk, pk))qj −
m2

j

q3j
(2.6)

for j = 1, . . . , n; for Hénon-Heiles there are also equations for qn+1 and pn+1 =
qn+1,t. The important thing to observe is that (2.6) is equivalent to the fact that

S+
j = q2j satisfies the Ermakov-Pinney equation (2.3) corresponding to a Schrö-

dinger equation with potential V and eigenvalue aj . Thus to obtain a Bäcklund
transformation for these many-body systems we simply apply a Darboux-Crum
transformation (2.1) to the potential V = V (qj , pj) to obtain Ṽ = V (q̃j , p̃j), and
then we know that the solutions of the Ermakov-Pinney equation must transform
according to (2.4). By this procedure we may explicitly construct the BT for the
many-body systems below (or for any restricted flow of KdV), and it is then simple
to calculate the generating function F (qj , q̃j) of this canonical transformation, such
that

dF =
∑

j

(pjdqj − p̃jdq̃j).

The discrete Lax equation for the BT,

ML = L̃M

where L̃ = L(q̃j , p̃j ;u), is necessary to ensure the preservation of the spectral curve
det(v − L(u)) = 0 (so that all the Hamiltonians in involution are preserved). This
follows immediately from the properties of the Darboux-Crum transformation, since
we know that the vector Ψ in the linear system (2.5) must transform according to
(2.2), and hence we may take (setting k = 1)

M =

(

−y y2 + u− λ

1 −y

)

.(2.7)

Of course we must determine y as a function of the dynamical variables. In the Gar-
nier and Hénon-Heiles cases it turns out that the potential depends on coordinates
only, V = V (qj), and so by adding the two equations in (2.1) we obtain

y(qj , q̃j) = ±

√

λ−
1

2
(V + Ṽ );

to obtain the correct continuum limit of the discrete dynamics it is necessary to
take the negative branch of the square root (see [8, 9]). For the Neumann system
V depends on both coordinates and momenta, so the above does not yield y(qj , q̃j).
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There is another way of writing L which arises more naturally via reduction from
the zero curvature representation of the KdV hierarchy [4, 5, 19], viz

L(u) =

(

1
2
Πt − 1

2
Πtt + (u− V )Π

Π − 1
2
Πt

)

where

Π(u) =

n
∑

j=1

q2j

u− aj

+ ∆(u).(2.8)

∆ is a polynomial in u fixing the dynamical term B in (1.1); we shall present the
appropriate ∆ and B in each case below. Clearly the t derivatives of Π can be
rewritten using the equations of motion to yield (1.1).

Finally if we write the (hyper-elliptic) spectral curve as

v2 = R(u)

then it is easy to check that the spectrality property [12] is satisfied for these
systems, in the sense that defining the conjugate variable to λ by

µ = −2
∂F

∂λ

we find that

L(λ)Ω = µΩ

with eigenvector Ω = (y, 1)T , or in other words µ2 = R(λ) so that (λ, µ) is a point
on the spectral curve. Note that (as for the examples in [10, 12]) this eigenvector
spans the kernel of M ,

M(λ)Ω = 0.

We can also write y explicitly in terms of both the old and the new variables related
by the BT, thus:

y(qj , pj) =
Πt(λ) + 2µ

2Π(λ)
, y(q̃j , p̃j) = −

(Π̃t(λ) − 2µ)

2Π̃(λ)
;(2.9)

clearly we denote Π̃(λ) = Π(q̃j , p̃j ;λ).

2.2. Generalised Hénon-Heiles system. For the many-body generalisation of
case (ii) integrable Hénon-Heiles system, the Hamiltonian generating the t flow
takes the form

h =
1

2

n+1
∑

j=1

p2
j + q3n+1 + qn+1





1

2

n
∑

j=1

q2j + c



−
1

2

n
∑

j=1

(

ajq
2
j +

m2
j

q2j

)

.

The original case (ii) integrable Hénon-Heiles system corresponds to n = 1 with
c = mj = aj = 0. The link between stationary fifth-order KdV and the type (ii)
system was noted by Fordy in [5], although this was anticipated in work of Weiss
[18], who used Painlevé analysis to derive a BT and associated linear problem (a
similar result also appears in [13]). None of these authors wrote a BT explicitly as
a canonical transformation with parameter, although (without parameter) this was
done for a non-autonomous version in [7].

For the Lax matrix L of the generalised (n + 1)-body Hénon-Heiles system we
have ∆ = −16u− 8qn+1 so that the extra term B(u) is given by

B =

(

−4pn+1 E

−16u− 8qn+1 4pn+1

)

, E = −16u2 + 8qn+1u− 4q2n+1 −

n
∑

j=1

q2j − 4c.
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The equations of motion for h imply that the squares of the first n coordinates q2j
satisfy the Ermakov-Pinney equation (2.3) for m = mj with

V = qn+1

and eigenvalue aj . Thus the BT for the system can be calculated directly by

applying the Darboux-Crum transformation to V = qn+1, to yield Ṽ = q̃n+1, and
applying (2.4) to each q2j for j = 1, . . . , n.

After some calculation the generating function for this canonical transformation
is found to be

F (qj , q̃j ;λ) =
n
∑

j=1

(

Zj +
mj

2
log

[

Zj −mj

Zj +mj

])

+
16

5
y5 + 4(qn+1 + q̃n+1)y

3

+



2q2n+1 + 2qn+1q̃n+1 + 2q̃2n+1 +
1

2

n
∑

j=1

(q2j + q̃2j ) + 2c



 y,

where we have found it convenient to use the quantities Zj(qj , q̃j) and y(qj , q̃j)
defined by

Z2
j = m2

j + (λ− aj)q
2
j q̃

2
j ,(2.10)

and

y = −

√

λ−
1

2
(qn+1 + q̃n+1).

In order to check the spectrality property, we have explicitly found that the
eigenvalue of L(λ) with eigenvector Ω = (y, 1)T can be written as

µ(qj , q̃j ;λ) = −

n
∑

j=1

Zj

λ− aj

−
1

y

∂F

∂y
,

which precisely equals −2∂F
∂λ

as required.

2.3. Garnier system. For the Garnier system the t flow is generated by the Hamil-
tonian

h =
1

2

n
∑

j=1

p2
j +

1

2
(

n
∑

j=1

q2j )2 −
1

2

n
∑

j=1

(

ajq
2
j +

m2
j

q2j

)

.

This differs from the traditional Garnier system as in [8, 15, 19] by the inclusion of
extra inverse square terms. The Newton equations for the qj are

qj,tt + 2(
∑

k

q2k)qj = ajqj −
m2

j

q3j
,

so clearly for the standard restricted flows of KdV [19], when mj = 0, each qj is an
eigenfunction of a Schrödinger operator with potential

V = 2
∑

j

q2j

and eigenvalue aj , while in general q2j is a product of eigenfunctions satisfying the

Ermakov-Pinney equation [2] for m = mj .
The Lax matrix of the Garnier system has ∆ = 1, so L takes the form (1.1) with

B =

(

0 u−
∑

j q
2
j

1 0

)

.

Applying the Darboux-Crum transformation we obtain a new potential

Ṽ = 2
∑

j

q̃2j ,
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and the corresponding BT induced on the Garnier system is equivalent to gauging
L by the matrix M of the form (2.7) with

y = −

√

λ−
∑

j

(q2j + q̃2j ).

Finally we can calculate the generating function for this BT, which may be
written as follows:

F (qj , q̃j ;λ) =

n
∑

j=1

(

Zj +
mj

2
log

[

Zj −mj

Zj +mj

])

−
1

3
y3,

where y(qj , q̃j) is as above and Zj is given by the same expression (2.10) as for
Hénon-Heiles. In [8] we derived this generating function for the special case mj = 0
when the logarithm terms do not appear. To check spectrality we notice that L(λ)
has eigenvalue

µ(qj , q̃j;λ) = −

n
∑

j=1

Zj

λ− aj

+ y

with eigenvector Ω, and so we see that µ = −2∂F
∂λ

.

2.4. Neumann system on the sphere. For the Neumann system the t flow is
generated by

h =
1

2

n
∑

j=1

p2
j −

1

2

n
∑

j=1

(

ajq
2
j +

m2
j

q2j

)

.

Once again this has extra inverse square terms compared with the standard Neu-
mann system [14, 15]. The Poisson bracket for this system is modified by constrain-
ing the particles to lie on a sphere, so that

(q, q) ≡
∑

j

q2j = const, (q, p) ≡
∑

j

qjpj = 0(2.11)

which results in the non-vanishing Dirac brackets

{pj, qk} = δjk −
qjqk

(q, q)
, {pj , pk} =

qjpk − qkpj

(q, q)
.(2.12)

With this bracket the Hamilton equations are qj,t = pj and (2.6) with

V = (q, q)−1
∑

j

(

p2
j + ajq

2
j −

m2
j

q2j

)

.

The Lax matrix for the Neumann system arises by setting ∆ = 0, which in (1.1)
gives the following matrix B:

B =

(

0 (q, q)
0 0

)

.

In fact if we start from the linear system (2.5) and leave V unspecified then (2.6) as
well as the constraint (q, q)t = 0 are consequences of the Lax equation, and together
these are sufficient to determine the form of V ; this is also how the equations for
the constrained Neumann system arise in a Lagrangian approach [14].

Given that the phase space is now degenerate with two Casimirs given by (2.11),
it would appear that the standard sort of generating function will no longer be
appropriate for describing a BT. It turns out that we can apply the Darboux-Crum
transformation as before, and transform the quantities q2j according to (2.4). In this

way we obtain new variables q̃j(qk, pk) and p̃j(qk, pk), which are naturally written
with the use of the quantity y(qk, pk) given by the first formula in (2.9); on the
Lax matrix this transformation arises by gauging with M as in (2.7). Similarly the



BÄCKLUND TRANSFORMATIONS 7

transformation can be inverted to give qj(q̃k, p̃k) and pj(q̃k, p̃k) written in terms of
y(q̃k, p̃k) given by the right hand formula of (2.9).

However, it would still be nice to write a generating function for this transfor-
mation. We have found that if we formally take

F (qj , q̃j ;λ) =

n
∑

j=1

(

Zj +
mj

2
log

[

Zj −mj

Zj +mj

]

+
1

2
y(q2j − q̃2j )

)

with Zj given by (2.10) as usual, and regard y as a sort of Lagrange multiplier
(independent of the coordinates and λ), then we do indeed obtain the correct ex-
pressions

pj =
∂F

∂qj
, p̃j = −

∂F

∂q̃j
,

but these contain y which is unspecified. If we then require that the constraints
(2.11) are preserved under the BT applied from old to new variables or vice-versa,
then in either direction the constraints are preserved if and only if y satisfies a
quadratic equation with solution given respectively by the formulae (2.9). Alterna-
tively if we require spectrality then second component of the equation L(λ)Ω = µΩ
gives

µ(qj , q̃j ;λ) = −
n
∑

j=1

Zj

λ− aj

= −2
∂F

∂λ

as required, while the first component gives (after making use of the formula (2.10)
and the BT)

µ = −
n
∑

j=1

Zj

λ− aj

+
1

y

∑

j

(q2j − q̃2j ).

Hence spectrality requires that the second term vanishes, and so the first constraint
(2.11) is preserved; the preservation of the second constraint is then an algebraic
consequence of the BT.

Thus we see that for this BT we can write the new variables as functions of the
old and vice-versa, but a formula for y(qj , q̃j ;λ) is lacking. Also this discretization
of the Neumann system is apparently new, since it is exact (preserving the Lax
matrix for the continuous system) unlike the Veselov or Ragnisco discretizations
discussed in [14].

3. Conclusions

It would also be interesting to look at BTs with parameter in the non-autonomous
case [7], where deformation with respect to the Bäcklund parameter would probably
have to be introduced (corresponding to the associated isomonodromy problem).
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magnet with quasi-periodic boundary conditions, in preparation.
[11] V.B. Kuznetsov, Quadrics on real Riemannian spaces of constant curvature: separation of

variables and connection with Gaudin magnet, J. Math. Phys. 33 (1992), 3240–3254.
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