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LATERAL DISTRIBUTION OF HIGH ENERGY NVJONS IN EAS

OF SIZES Ne__105 and Ne.__106.
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Muon energy spectra and muon lateral distribution
in EAS are investigated with the help of the underground
magnetic spectrometer working as a part of the Moscow State
University EAS array[l,2,3]. Before going to new results on
EAS muons a general concept of the measurement shal]d be men-
tioned. For every regislered muon the data on EAS are analy-
sed and the following EAS parameters are obtained:size N
distance r from the shower axis to muon, age parameter se'
So the number of muons with energy over some threshold E_
associated to EAS of fixed parameters are measured: I
To obtain traditional characteristics-muon flux densities

as a function of the distance r and muon energy Er,i.e. muon
lateral distribution and energy spectra which are widely dis-
cussed in terms of hadron-nucleus interaction model and com-

positbn of p{,_mary cosmic rays one should use the equation:

of EAS,II_!_(_,%_,_) is probabi-where _,_'_is known spectrum EA_ ,
lity to register the EAS of specified_parameters, _,_

. is probability to register muon of energy over E in magnetic
spectrometer with effective areaG'C_,$6r).l [%_)4s angular dis-
tribution of EAS,_,(w);_spectrometer geom_etry limit on zenith
angle@_is operation time . In our case probability

" is equal _ ,
wc,,: ._..f,(&, (2}
where p_('E_,,_,2,_._ is muon flux aensity. -E,_S

F_ final analysis: only showers wlth _>.0,9 f 0,_ _ s
s _1,6 ) are selected. In this case the densities _/_ de-
rived from experimental data are unbyased on age p_ar_meter.
So equation (1) transforms to

_',as _ ...-_,,_ ,... -- (3)
where _ equal togr%_'JI/_,_'_(_,_'t#)__&W is _eometr2 factor
@_l@:J_In Table I the-_umbers of registered muons for thre-
shold energies E =10,200 and 500 Gev are presented.EAS size
ranges are:N I-_oI0UI_ _Na=6.10" ) ,N 2-I0_-3.10 r (_N_=I,6._O r)

Ne3- 3.10 % 1_' (_N_=5.10_ Ne4->/lO w _(<N_ = 3.10_).
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The data for muon threshold

8 "T_/_£ _'r=200 energies E =200 a_d 500 Gev
I are corrected for _DM as in

i [_I. _luon lateral distributi_:
7 on ( LD ) shows weak depen-

dance on EAS size. The fol-

6 4 lowing formula approximates
the obtained data

5 T ,p,,=
where parameterO_ is equal

E_Ge_ 50 IO0 2OO 5004 E_=500 Gev -- ,78 0,77' 0,7/6 0,77
+ 0,04 0,05 0,06 O,1

and _ I,
3 _ I k= 1,3'tO_/_r . ZS'o)_/
2 n= q__" (_/ ,.

7,, -
I I IO+ 3 m E=500

o = ,- _ P

I',rrt _ In Fig.la the average LD
O of muons with E_ =200 and

10 100 500 Gev are presented for
<N> =2.1 O4 .

Fig.1 a The mean muoneenergy as a function of
distance r is presented in Fig.lb. Expe-

l_'[ ' ' ' rimentally measured underground muon en_r-
160 nder_ro_,_- gy spectra were transformed to muon spec-

•- tra in atmosphere. Solid line in Fig.lb
presents mean muon energy in atmos_sre

k,_l at sea level. At the distance r=120+12m

.'.,_ il k,_',_, mean muon energy is equal to mean over

m0s#,ere_x_; EAS energy of muons,<E_= 8+I Gev,_3].ot The ratio of positive and _egative muon .
10 <E/_s_-: numbers was analysed Tor various distan-

_, , , _x ces r. Numbers of muons in differential
P_l_. ranges of energy are presented in Table210 100 " -

It is seen that the ratio I /I does not

Fig.1 b deviate from I in statistical errora.

Table I. Numbers of registered muons.

r=O-8 rn r=8-16 ,_ r=i6-32,_ r=32-64_, r=64"-128 r_128

, ,i ' 200500  o oo50o  oi2o/3E,,,_,, 10 20C _00 10 20C500 110 _00,500 10

_Ii 359 94 35 556 92 30 980 871821 952 29 5 301 3 1 55 0

46 1 2 2 112 2 O 10 0_9 359 94 35 484 81 28 625 O 508 1

N_I 224 60 22 25E 42 14 177 , 5 ..... .: -.- -

N_2 84 23 12 131 19 7 273 181 3 207 3 1 ......

N_3 41 8 I 7_ 17 5 139 71 2 205 5 I 33 I O - -
N_4 10 3 0 17 3 2 36 3_ 0 96 4 0 79 - I 0 IC 0
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Comparison of LD of muons regis-

A-N =106 tered in E-W sectors of earth mag-
e netic field and of muons registered

104 A O_N =105 in N-S sectors does not show diffe-
e rence in statistical errors ( of

o _ about 10-20_ )for muon densities.
It proves that for vertical show-

o ers deflection of muons in earth
103 A magnetic field is much less than

angular spread of muon parent par-

o _ ticles in acts of their generation.
Full numbers of muons N# (>ED )

size N =105 and N =106
N_ E_ G in EAS of e e

102 / --_ _ are presented in Fig.2a. The depen-
dence N_(] _) for the range of muon
threshold _rergies El=t0-500 Gev
and EAS of slzes N =6.104-3.106

E/,Gev _ _ can be presented i_ form
101 , ,

0 tO0 I000 N#( N e)_Ne _

Fig 2 a. with M=0,78 in experimental errors• )resented above.

l ' ' I ' In Fig.2b our data
,, on muons of threshold

(E_2OOGev) energy E_=200 Gev
103 _# - present work 4 _are compared to thedata[4]of Indian

¢ -[_, direct method - group. The data_4]
-[41 indirect method is recalculated to

sea level taking

i the dependance N

on depth x in at_os-

_ _ phere as

. N^_ exp(-x/180 )

__i _ [ w_ere x is in g/cm2

. V__ One can see that

102 our data do not
T i confirm the change

o_ the exponent

_ in N_(N e ) depen-dance obtained by
. indirect method

in [4 ].

N e
i

101 I , , I |

10 5 FiG. 2 b 10 6
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Table 2. Numbers of positive I+ and negative I_ muons.
Gev 10-50 50-I00 100-200 200-500 500-I000

E_ I 161 97 77 57 9
r < 16 m i + 164 91 82 56 9

r=16-32m _+ 174 75 51 18 4159 68 43 15 0

- 224 69 16 6 0r _ 32 m + 206 61 15 6 I

Experimental results presented above were compared
to results of Monte-Carlo calculations based on the quark,
gluon string theory of hadron-nucleon interactions[5]. This
theory explains accelerator data including recent SPS col-
lider data. In[6] this theory was applied to hadron-nucleus
interactions. CalculaNons of EAS were carried out for muon

production throughpion and kaon decays for primary protons
and various primary nuclei in assumption of "superposition"
model of nucleus-nucleus interactions. The composiNon of
primaries was suggested as follows

A I 4 14 ' 21 56
_ 40 15 15 15 15

Results of the calculations are presented in Fig.la
curves 1. One can see that for the highest measured muon

threshold energies E_=200 and 500 Gev the theory does not
agree with the experlment. To make agreement better there
were carried out calculations taking into account muon pro-
duction through decays of charm particles. Cross_section
of charm production was taken as in[7]. Curves 2 present
the results of this calculations. Soft jet production[8]
was also checked as a reason for additional spread of muons.
( curves 3 in Fig.la ). Both processes do not change LD of
muons of threshold energies E_=200-500 Gev in the range of
distances r close to median radius as is experimentally mea
sured. Muon LD proved to be more sensitive ta the model of
nucleus-nucleus interaction. The "fragmentation" model in
which nucleons not included in heavy fragments interact
with target nucleus gives better agreement with the expe-
rimental data. In Figla curves 4 present results of the
calculations taking into account this "fragmentation" mo-
del. Primary composition is as before.
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