3,228 research outputs found

    DC-conductivity of a suspension of insulating particles with internal rotation

    Full text link
    We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids

    Tolerance analysis approach based on the classification of uncertainty (aleatory / epistemic)

    Get PDF
    Uncertainty is ubiquitous in tolerance analysis problem. This paper deals with tolerance analysis formulation, more particularly, with the uncertainty which is necessary to take into account into the foundation of this formulation. It presents: a brief view of the uncertainty classification: Aleatory uncertainty comes from the inherent uncertain nature and phenomena, and epistemic uncertainty comes from the lack of knowledge, a formulation of the tolerance analysis problem based on this classification, its development: Aleatory uncertainty is modeled by probability distributions while epistemic uncertainty is modeled by intervals; Monte Carlo simulation is employed for probabilistic analysis while nonlinear optimization is used for interval analysis.“AHTOLA” project (ANR-11- MONU-013

    A review of stakeholders and interventions in Nigeria's electricity sector

    Get PDF
    In this paper, we explored the interplay between the electricity market structure, methods of electricity trading and different stakeholder dynamics within the Nigerian Electricity Supply Industry (NESI) with a view to understanding how these interplays impact on various forms of interventions in the Nigerian electricity sector. We started off by exploring the market structure and electricity trading system within the Nigerian electricity sector and reviewed the various stakeholder groups within centralized and decentralized electricity systems in Nigeria's electricity sector by highlighting their core responsibilities and the dynamics at play in satisfying their interests. This study revealed that: (1) external stakeholder groups (such as donor agencies and multi-lateral organizations) exert more influence in Nigeria's electricity sector through financial interventions; (2) lack of coordination and engagement among various stakeholder groups pose a challenge to effective electricity infrastructure interventions that address the needs of people in society. The study concludes by highlighting the implications of these challenges and the need to address the rising complexities and uncertainties for better stakeholder involvement in addressing the salient challenges in the sector

    Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.

    Get PDF
    Background - Myco-heterotrophy evolved independently several times during angiosperm evolution. Although many species of myco-heterotrophic plants are highly endemic and long-distance dispersal seems unlikely, some genera are widely dispersed and have pantropical distributions, often with large disjunctions. Traditionally this has been interpreted as evidence for an old age of these taxa. However, due to their scarcity and highly reduced plastid genomes our understanding about the evolutionary histories of the angiosperm myco-heterotrophic groups is poor. Results - We provide a hypothesis for the diversification of the myco-heterotrophic family Burmanniaceae. Phylogenetic inference, combined with biogeographical analyses, molecular divergence time estimates, and diversification analyses suggest that Burmanniaceae originated in West Gondwana and started to diversify during the Late Cretaceous. Diversification and migration of the species-rich pantropical genera Burmannia and Gymnosiphon display congruent patterns. Diversification began during the Eocene, when global temperatures peaked and tropical forests occurred at low latitudes. Simultaneous migration from the New to the Old World in Burmannia and Gymnosiphon occurred via boreotropical migration routes. Subsequent Oligocene cooling and breakup of boreotropical flora ended New-Old World migration and caused a gradual decrease in diversification rate in Burmanniaceae. Conclusion - Our results indicate that extant diversity and pantropical distribution of myco-heterotrophic Burmanniaceae is the result of diversification and boreotropical migration during the Eocene when tropical rain forest expanded dramaticall

    Observations of a solar flare and filament eruption in Lyman <span class='mathrm'>α</span> and X-rays

    Get PDF
    &lt;p&gt;&lt;b&gt;Context&lt;/b&gt;: L&#945; is a strong chromospheric emission line, which has been relatively rarely observed in flares. The Transition Region and Coronal Explorer (TRACE) has a broad “Lyman &#945;” channel centered at 1216 Å used primarily at the beginning of the mission. A small number of flares were observed in this channel.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Aims&lt;/b&gt;: We aim to characterise the appearance and behaviour of a flare and filament ejection which occurred on 8th September 1999 and was observed by TRACE in L&#945;, as well as by the Yohkoh Soft and Hard X-ray telescopes. We explore the flare energetics and its spatial and temporal evolution. We have in mind the fact that the L&#945; line is a target for the Extreme Ultraviolet Imaging telescope (EUI) which has been selected for the Solar Orbiter mission, as well as the LYOT telescope on the proposed SMESE mission.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods&lt;/b&gt;: We use imaging data from the TRACE 1216 Å, 1600 Å and 171 Å channels, and the Yohkoh hard and soft X-ray telescopes. A correction is applied to the TRACE data to obtain a better estimate of the pure L&#945; signature. The L&#945;  power is obtained from a knowledge of the TRACE response function, and the flare electron energy budget is estimated by interpreting Yohkoh/HXT emission in the context of the collisional thick target model.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results&lt;/b&gt;: We find that the L&#945;  flare is characterised by strong, compact footpoints (smaller than the UV ribbons) which correlate well with HXR footpoints. The L&#945; power radiated by the flare footpoints can be estimated, and is found to be on the order of 1026 erg s-1 at the peak. This is less than 10% of the power inferred for the electrons which generate the co-spatial HXR emission, and can thus readily be provided by them. The early stages of the filament eruption that accompany the flare are also visible, and show a diffuse, roughly circular spreading sheet-like morphology, with embedded denser blobs.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions&lt;/b&gt;: On the basis of this observation, we conclude that flare and filament observations in the L&#945; line with the planned EUI and LYOT telescopes will provide valuable insight into solar flare evolution and energetics, especially when accompanied by HXR imaging and spectroscopy.&lt;/p&gt

    Dust Emission Features in NGC 7023 between 0.35 and 2.5 micron: Extended Red Emission (0.7 micron) and Two New Emission Features (1.15 and 1.5 micron)

    Full text link
    We present 0.35 to 2.5 micron spectra of the south and northwest filaments in the reflection nebula NGC 7023. These spectra were used to test the theory of Seahra & Duley that carbon nanoparticles are responsible for Extended Red Emission (ERE). Our spectra fail to show their predicted second emission band at 1.0 micron even though both filaments exhibit strong emission in the familiar 0.7 micron ERE band. The northwest filament spectrum does show one, and possibly two, new dust emission features in the near-infrared. We clearly detect a strong emission band at 1.5 micron which we tentatively attribute to beta-FeSi_2 grains. We tentatively detect a weaker emission band at 1.15 micron which coincides with the location expected for transitions from the conduction band to mid-gap defect states of silicon nanoparticles. This is added evidence that silicon nanoparticles are responsible for ERE as they already can explain the observed behavior of the main visible ERE band.Comment: 9 pages, color figures, accepted to the ApJ, color and b/w versions available at http://dirty.as.arizona.edu/~kgordon/papers/ere_1um.htm

    Magnetic properties of Gd_xY_{1-x}Fe_2Zn_{20}: dilute, large, S\textbf {S} moments in a nearly ferromagnetic Fermi liquid

    Full text link
    Single crystals of the dilute, rare earth bearing, pseudo-ternary series, Gd_xY_{1-x}Fe_2Zn_{20} were grown out of Zn-rich solution. Measurements of magnetization, resistivity and heat capacity on Gd_xY_{1-x}Fe_2Zn_{20} samples reveal ferromagnetic order of Gd^{3+} local moments across virtually the whole series (x≄0.02x \geq 0.02). The magnetic properties of this series, including the ferromagnetic ordering, the reduced saturated moments at base temperature, the deviation of the susceptibilities from Curie-Weiss law and the anomalies in the resistivity, are understood within the frame work of dilute, S\textbf {S} moments (Gd^{3+}) embedded in a nearly ferromagnetic Fermi liquid (YFe_2Zn_{20}). The s-d model is employed to further explain the variation of TCT_{\mathrm{C}} with x as well as the temperature dependences of of the susceptibilities

    Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. This model has allowed researchers a simple and rapid method to observe cellular interactions and mechanisms. In the present study, we developed an organotypic PD model from rat brains that includes all the areas involved in the nigrostriatal pathway in a single slice preparation, without using neurotoxins to induce the dopaminergic lesion. The mechanical transection of the nigrostriatal pathway obtained during slice preparation induced PD-like histopathology. Progressive nigrostriatal degeneration was monitored combining innovative approaches, such as diffusion tensor magnetic resonance imaging (DT-RMI) to follow fiber degeneration and mass spectrometry to quantify striatal dopamine content, together with bright-field and fluorescence microscopy imaging. A substantia nigra dopaminergic cell number decrease was observed by immunohistochemistry against rat tyrosine hydroxylase (TH) reaching 80% after 2 days in culture associated with a 30% decrease of striatal TH-positive fiber density, a 15% loss of striatal dopamine content quantified by mass spectrometry and a 70% reduction of nigrostriatal fiber fractional anisotropy quantified by DT-RMI. In addition, a significant decline of medium spiny neuron density was observed from days 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches
    • 

    corecore