148 research outputs found

    Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs

    Full text link
    The connection between the radio emission from "lightnings" produced by the absorption of high-energy photons from the cosmic gamma-ray background in a neutron star magnetosphere and radio bursts from rotating radio transients (RRATs) is investigated. The lightning length reaches 1000 km; the lightning radius is 100 m and is comparable to the polar cap radius. If a closed magnetosphere is filled with a dense plasma, then lightnings are efficiently formed only in the region of open magnetic field lines. For the radio emission from a separate lightning to be observed, the polar cap of the neutron star must be directed toward the observer and, at the same time, the lightning must be formed. The maximum burst rate is related to the time of the plasma outflow from the polar cap region. The typical interval between two consecutive bursts is ~100 s. The width of a single radio burst can be determined both by the width of the emission cone formed by the lightning emitting regions at some height above the neutron star surface and by a finite lightning lifetime. The width of the phase distribution for radio bursts from RRATs, along with the integrated pulse width, is determined by the width of the bundle of open magnetic field lines at the formation height of the radio emission. The results obtained are consistent with the currently available data and are indicative of a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update

    Logical-mathematical Evaluation Model of Blast-furnace Melting Operation

    Get PDF
    The logical-mathematical evaluation model of blast-furnace melting operation is represented. The model provides an opportunity to evaluate the normal operation mode of blast furnace and further deviations from this mode such as overdeveloped gas flows (peripheral and central), violation of thermal melting conditions (hot and cold course of melt), violation of smooth descent of burned materials in the furnace (tight furnace operation, higher and lower suspension of burden). The functional capabilities of developed software are represented. Keywords: blast-furnace production, information logical system, software development, blast-furnace melting operation diagnostic

    Circular dichroism at equal energy sharing in photo-double-ionization of He

    Get PDF
    Interference between dipole and quadrupole transition amplitudes in photo-double-ionization of He by an elliptically polarized vuv photon is shown to induce circular dichroism in the case of equal energy sharing. The magnitude of this retardation-induced dichroic effect is estimated and its impact on the nondipole asymmetries of the triply differential cross section is demonstrated

    Does Pulsar B1757--24 Have a Fallback Disk?

    Full text link
    Radio pulsars are thought to spin-down primarily due to torque from magnetic dipole radiation (MDR) emitted by the time-varying stellar magnetic field as the star rotates. This assumption yields a `characteristic age' for a pulsar which has generally been assumed to be comparable to the actual age. Recent observational limits on the proper motion of pulsar B1757-24, however, revealed that the actual age (>39 kyr) of this pulsar is much greater than its MDR characteristic age (16 kyr) - calling into question the assumption of pure MDR spin-down for this and other pulsars. To explore the possible cause of this discrepancy, we consider a scenario in which the pulsar acquired an accretion disk from supernova ejecta, and the subsequent spin-down occurred under the combined action of MDR and accretion torques. A simplified model of the accretion torque involving a constant mass inflow rate at the pulsar magnetosphere can explain the age and period derivative of the pulsar for reasonable values of the pulsar magnetic field and inflow rate. We discuss testable predictions of this model.Comment: Accepted by ApJ Letters. 15 pages with 1 figur

    Optimal allocation of fuel and energy resources in the complex blast-furnace plants

    Full text link
    The paper presents the model of optimal allocation of power resources in a blast furnace taking into account the change of smelting parameters. The optimization model allows to predict parameters of injected fuel on separate (at individual, in certain) blast furnaces in various technological situations. At problem formulation and task solution, the model considers the static characteristics describing the influence of changes of melting conditions on overall economic indicators of furnaces, the mathematical description external and internal limitations on operation of some blast furnaces and blast-furnace plant generally. Informational-modelling system optimization of allocation of natural gas in a blast-furnace plant was developed on the presented model. This model includes: input and adjustment of data; calculation module; optimization; output and the assaying of results. The results of comparative assaying of allocation of natural gas on the basis of operation data of the blast-furnace plant of OJSC “Magnitogorsk Iron and Steel Works ” are achieved. Analysis of the results shows that the optimization model of joint distribution of natural gas and oxygen allows to use effectively the available fuel and energy resources, taking account the technological limitations in the work of individual furnaces as well as a plant in general

    Absorption of Gamma-Ray Photons in a Vacuum Neutron Star Magnetosphere: I. Electron-Positron Pair Production

    Full text link
    The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.Comment: 29 pages, 1 figur

    Influence of photon energy on the efficiency of photochemotherapy

    Get PDF
    It is found that when indotricarbocyanine dye in HeLa cells is exposed to photons with different energies the efficiency of cell damage is wavelength independent provided the photosensitizer absorbs the same number of photons per unit time. In vivo animal experiments with two strains of tumor show that when the wavelength of the irradiating light is increased (668, 740, and 780 nm) and the number of photons absorbed per unit time per unit volume of the tumors is held constant, the damage depth increases by a factor of 1.5 and 3, respectively. The observed changes are related both to differences in the in vivo tissue optical transmission with increasing wavelength and an increased local concentration of oxygen owing to photodissociation of oxy-hemoglobin

    Influence of photon energy on the efficiency of photochemotherapy

    Get PDF
    It is found that when indotricarbocyanine dye in HeLa cells is exposed to photons with different energies the efficiency of cell damage is wavelength independent provided the photosensitizer absorbs the same number of photons per unit time. In vivo animal experiments with two strains of tumor show that when the wavelength of the irradiating light is increased (668, 740, and 780 nm) and the number of photons absorbed per unit time per unit volume of the tumors is held constant, the damage depth increases by a factor of 1.5 and 3, respectively. The observed changes are related both to differences in the in vivo tissue optical transmission with increasing wavelength and an increased local concentration of oxygen owing to photodissociation of oxy-hemoglobin

    The Duck Redux: An Improved Proper Motion Upper Limit for the Pulsar B1757-24 Near the Supernova Remnant G5.4-1.2

    Full text link
    "The Duck" is a complicated non-thermal radio system, consisting of the energetic radio pulsar B1757-24, its surrounding pulsar wind nebula G5.27-0.90 and the adjacent supernova remnant (SNR) G5.4-1.2. PSR B1757-24 was originally claimed to be a young (~15 000 yr) and extreme velocity (>~1500 km/s) pulsar which had penetrated and emerged from the shell of the associated SNR G5.4-1.2, but recent upper limits on the pulsar's motion have raised serious difficulties with this interpretation. We here present 8.5 GHz interferometric observations of the nebula G5.27-0.90 over a 12-year baseline, doubling the time-span of previous measurements. These data correspondingly allow us to halve the previous upper limit on the nebula's westward motion to 14 milliarcseconds/yr (5-sigma), allowing a substantive reevaluation of this puzzling object. We rule out the possibility that the pulsar and SNR were formed from a common supernova explosion ~15 000 yrs ago as implied by the pulsar's characteristic age, but conclude that an old (>~70 000 yr) pulsar / SNR association, or a situation in which the pulsar and SNR are physically unrelated, are both still viable explanations.Comment: 9 pages, including 1 color and 1 B/W figure. Minor changes following referee's report. ApJ, in pres

    Anomalous attenuation of extraordinary waves in the ionosphere heating experiments

    Full text link
    Multiple scattering of radio waves by artificial random irregularities HF-induced in the ionosphere F region may cause significant attenuation of both ordinary and extraordinary waves together with common anomalous absorption of ordinary waves due to their non-linear conversion into plasma waves. To demonstrate existence and strength of this effect, direct measurements of attenuation of both powerful pump wave and weak probing waves of extraordinary polarization have been carried out during an experimental campaign on September 6, 7 and 9, 1999 at the Sura heating facility. The attenuation magnitude of extraordinary waves reaches of 1-10 dB over a background attenuation caused by natural irregularities. It is interpreted in the paper on the base of the theory of multiple scattering from the artificial random irregularities with characteristic scale lengths of 0.1-1 km. Simple procedure for determining of irregularity spectrum parameters from the measured attenuation of extraordinary waves has been implemented and some conclusions about the artificial irregularity formation have been obtained.Comment: 17 pages, 9 figure
    corecore