265 research outputs found

    Radial artery vasomotor function following transradial cardiac catheterisation

    Get PDF
    AIMS: To determine the reproducibility of flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD) in the assessment of radial artery vasomotor function, and to examine the effect of transradial catheterisation on radial artery injury and recovery. METHODS: Radial artery FMD and NMD were examined in 20 volunteers and 20 patients on four occasions (two visits at least 24 hours apart, with two assessments at each visit). In a further 10 patients, radial artery FMD was assessed in the catheterised arm prior to, at 24 hours and 3 months following cardiac catheterisation. RESULTS: There were no differences in baseline radial artery diameter (2.7±0.4 mm vs 2.7±0.4 mm), FMD (13.4±6.4 vs 12.89±5.5%) or NMD (13.6±3.8% vs 10.1±4.3%) between healthy volunteers and patients (p>0.05 for all comparisons). Mean differences for within and between day FMD were 2.53% (95% CIs −15.5% to 20.5%) and −4.3% (−18.3% to 9.7%) in patients. Compared to baseline, radial artery FMD was impaired at 24 hours (8.7±4.1% vs 3.9±2.9%, p=0.015) but not 3 months (8.7±4.1% vs 6.2±4.4, p=0.34) following transradial catheterisation. CONCLUSIONS: Radial FMD is impaired early after transradial catheterisation but appears to recover by 3 months. While test–retest variability was demonstrated, our findings suggest that transradial access for cardiac catheterisation may afford a potential model of vascular injury and repair in vivo in man

    Plasma Science in Planetary Entry

    Get PDF
    Spacecraft entering a planetary atmosphere dissipate a great deal of energy into the surrounding gas. In the frame of reference of the vehicle, the atmospheric gas suddenly decelerates from hypersonic (Mach ~5-50) to subsonic velocities. The kinetic energy of the gas is rapidly converted to thermal and chemical energy, forming a bow shock behind which a plasma with energies on the order of one electron volt (eV) is produced. The resulting shock layer relaxes from strong thermal non-equilibrium that is translationally hot but internally cold and un-ionized toward a thermochemically equilibrated plasma over a distance of a few centimeters. Composition is dependent upon the planetary atmosphere Air for Earth, CO2/N2 for Mars and Venus, N2/CH4 for Titan and H2/He/CH4 for Saturn, Neptune and Jupiter. Typical velocities of entry may range from 3-7 km/s (4-25 MJ/kg) for Titan/Mars, 8-14 km/s (30-100 MJ/kg) for Earth/Venus, and 25-40 km/s (300-800 MJ/kg) for outer planets. The equilibrium plasmas produced from these conditions are highly dissociated (up to and above 99%) and ionized (0.1- 15%), with temperatures from 7,000-15,000K and pressures from 0.1-1.0 bar. Understanding the behavior of these plasmas the way in which they approach equilibrium, how they radiate, and how they interact with materials is an active area of research necessitated by requirements to predict and test the performance of thermal protection systems (TPS) that enable spacecraft to deliver scientific instruments, and people, to foreign worlds and back to Earth. The endeavor is a multi-physics problem, with key processes highlighted in Fig. 1. This white paper describes the current state of the art in simulating shock layer plasmas both computationally and in ground test facilities. Gaps requiring further research and development are identified

    Rotigaptide protects the myocardium and arterial vasculature from ischaemia reperfusion injury

    Get PDF
    Aim: Ischaemia-reperfusion injury (IRI) causes impaired endothelial function and is a major component of the adverse effects of reperfusion following myocardial infarction. Rotigaptide increases gap junction conductance via connexin-43. We tested the hypothesis that rotigaptide reduces experimental myocardial infarction size and ameliorates endothelial IRI in humans. Methods: Myocardial infarction study: porcine myocardial infarction was achieved by catheter-induced occlusion of the left anterior descending artery. In a randomized double-blind study, rotigaptide (n = 9) or placebo (n = 10) was administered intravenously as a 10 min bolus prior to reperfusion and continuously during 2 h of reperfusion. Myocardial infarction size (IS) was assessed as proportion of the area at risk (AAR). Human translational study: forearm IRI was induced in the presence or absence of intra-arterial rotigaptide. In a randomized double-blind study, forearm arterial blood flow was measured at rest and during intra-arterial infusion of acetylcholine (5–20 Όg min–1; n = 11) or sodium nitroprusside (2–8 mg min–1; n = 10) before and after intra-arterial infusion of placebo or rotigaptide, and again following IRI. Results: Myocardial infarction study: Rotigaptide treatment was associated with a reduction of infarct size (IS/AAR[%]: 18.7 ± 4.1 [rotigaptide] vs. 43.6 ± 4.2 [placebo], P = 0.006). Human translational study: Endothelium-dependent vasodilatation to acetylcholine was attenuated after ischaemia-reperfusion in the presence of placebo (P = 0.007), but not in the presence of rotigaptide (P = NS). Endothelium-independent vasodilatation evoked by sodium nitroprusside was unaffected by IRI or rotigaptide (P = NS). Conclusions: Rotigaptide reduces myocardial infarction size in a porcine model and protects from IRI-related endothelial dysfunction in man. Rotigaptide may have therapeutic potential in the treatment of myocardial infarction

    Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading

    Get PDF
    The 2010-2011 Canterbury earthquake sequence in New Zealand exposed loess-mantled slopes in the area to very high levels of seismic excitation (locally measured as >2 g). Few loess slopes showed permanent local downslope deformation, and most of these showed only limited accumulated displacement. A series of innovative dynamic back pressured shear-box tests were undertaken on intact and remoulded loess samples collected from one of the recently active slopes replicating field conditions under different simplified horizontal seismic excitations. During each test, the strength reduction and excess pore water pressures generated were measured as the sample failed. Test results suggest that although dynamic liquefaction could have occurred, a key factor was likely to have been that the loess was largely unsaturated at the times of the large earthquake events. The failure of intact loess samples in the tests was complex and variable due to the highly variable geotechnical characteristics of the material. Some loess samples failed rapidly as a result of dynamic liquefaction as seismic excitation generated an increase in pore-water pressure, triggering rapid loss of strength and thus of shear resistance. Following initial failure, pore pressure dissipated with continued seismic excitation and the sample consolidated, resulting in partial shear-strength recovery. Once excess pore-water pressures had dissipated, deformation continued in a critical effective stress state with no further change in volume. Remoulded and weaker samples, however, did not liquefy, and instead immediately reduced in volume with an accompanying slower and more sustained increase in pore pressure as the sample consolidated. Thereafter excess pressures dissipated and deformation continued at a critical state. The complex behaviour explained why, despite exceptionally strong ground shaking, there was only limited displacement and lack of run-out: dynamic liquefaction was unlikely to occur in the freely draining slopes. Dynamic liquefaction however remained a plausible mechanism to explain loess failure in some of the low-angle toe slopes, where a permanent water table was present in the loess

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt

    Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo

    Get PDF
    11ÎČ-Hydroxysteroid dehydrogenase type 1 (11ÎČHSD1) is a therapeutic target in metabolic syndrome because it catalyses reductase regeneration of cortisol from cortisone in adipose and liver. 11ÎČHSD1 can also catalyze the reverse dehydrogenase reaction in vitro (e.g., if cofactor is limited). We used stable isotope tracers to test the hypothesis that both 11ÎČHSD1-reductase and -dehydrogenase activities occur in human metabolic tissues in vivo. 1,2-[2H]2-Cortisone (d2-cortisone) was validated as a tracer for 11ÎČ-dehydrogenase activity and its inhibition by licorice. d2-Cortisone and 9,11,12,12-[2H]4-cortisol (d4-cortisol) (to measure 11ÎČ-reductase activity) were coinfused and venous samples obtained from skeletal muscle, subcutaneous adipose (n = 6), and liver (n = 4). Steroids were measured by liquid chromatography–tandem mass spectrometry and arteriovenous differences adjusted for blood flow. Data are means ± SEM. 11ÎČ-Reductase and -dehydrogenase activities were detected in muscle (cortisol release 19.7 ± 4.1 pmol/100 mL/min, d3-cortisol 5.9 ± 1.8 pmol/100 mL/min, and cortisone 15.2 ± 5.8 pmol/100 mL/min) and splanchnic (cortisol 64.0 ± 11.4 nmol/min, d3-cortisol 12.9 ± 2.1 nmol/min, and cortisone 19.5 ± 2.8 nmol/min) circulations. In adipose, dehydrogenase was more readily detected than reductase (cortisone release 38.7 ± 5.8 pmol/100 g/min). Active recycling between cortisol and cortisone in metabolic tissues in vivo may facilitate dynamic control of intracellular cortisol but makes consequences of dysregulation of 11ÎČHSD1 transcription in obesity and diabetes unpredictable. Disappointing efficacy of 11ÎČHSD1 inhibitors in phase II studies could be explained by lack of selectivity for 11ÎČ-reductase
    • 

    corecore