186 research outputs found

    Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo

    Get PDF
    AbstractSpecific inhibitors for cathepsin L and cathepsin S have been developed with the help of computer-graphic modeling based on the stereo-structure. The common fragment, N-(L-trans-carbamoyloxyrane-2-carbonyl)-phenylalanine-dimethylamide, is required for specific inhibition of cathepsin L. Seven novel inhibitors of the cathepsin L inhibitor Katunuma (CLIK) specifically inhibited cathepsin L at a concentration of 10−7 M in vitro, while almost no inhibition of cathepsins B, C, S and K was observed. Four of the CLIKs are stable, and showed highly selective inhibition for hepatic cathepsin L in vivo. One of the CLIK inhibitors contains an aldehyde group, and specifically inhibits cathepsin S at 10−7 M in vitro

    TNF-α increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes

    Get PDF
    Inflammatory mediators have been reported to promote malignant cell growth, invasion and metastatic potential. More specifically, we have recently reported that tumour necrosis factor alpha (TNF-a) increases melanoma cell attachment to extracellular matrix (ECM) substrates and invasion through fibronectin. In this study, we extend these investigations asking specifically whether the TNF-a effect on cell invasion and migration involves activation of proteolytic enzymes. We examined the effect of TNF-a on melanoma expression/activation of type IV gelatinases matrix metalloproteinases 2 and 9 (MMPs -2 and -9) and general proteolytic enzymes. Stimulation with TNF-a significantly increased both melanoma cell migration at 24 h ( þ 21%) and invasion through fibronectin ( þ 35%) but did not upregulate/activate the expression of latent MMP-2 constitutively produced by these cells and did not upregulate their general protease activity. However, the increased cell migration and invasion through fibronectin observed following stimulation with TNF-a were inhibited by the general protease inhibitor a2 macroglobulin. These findings suggest that the promigratory and proinvasive effect of TNF-a on this melanoma cell line may be mediated to some extent by induction of localised cell membrane-bound degradative enzyme activity, which is not readily detected in biochemical assays

    Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    Get PDF
    Background: Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet b cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings: Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8 + T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8 + T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8 + T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions: Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8 + T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strateg

    CD4-Independent Human Immunodeficiency Virus Infection Involves Participation of Endocytosis and Cathepsin B

    Get PDF
    During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1

    Dietary factors impact on the association between CTSS variants and obesity related traits.

    Get PDF
    Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets

    The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse

    Get PDF
    Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process
    corecore