88 research outputs found

    Band gap tuning and orbital mediated electron–phonon coupling in HoFe1−xCrxO3 (0 ≤ x ≤ 1)

    Get PDF
    We report on the evidenced orbital mediated electron–phonon coupling and band gap tuning in HoFe1−xCrxO3 (0 ≤ x ≤ 1) compounds. From the room temperature Raman scattering, it is apparent that the electron-phonon coupling is sensitive to the presence of both the Fe and Cr at the B-site. Essentially, an Ag like local oxygen breathing mode is activated due to the charge transfer between Fe3+ and Cr3+ at around 670 cm−1, this observation is explained on the basis of Franck-Condon mechanism. Optical absorption studies infer that there exists a direct band gap in the HoFe1−xCrxO3 (0 ≤ x ≤ 1) compounds. Decrease in band gap until x = 0.5 is ascribed to the broadening of the oxygen p-orbitals as a result of the induced spin disorder due to Fe3+ and Cr3+ at B-site. In contrast, the increase in band gap above x = 0.5 is explained on the basis of the reduction in the available unoccupied d-orbitals of Fe3+ at the conduction band. We believe that above results would be helpful for the development of the optoelectronic devices based on the ortho-ferrites

    Magnetic Anomalies in a New Manganocuprate Gd3Ba2Mn2Cu2O12

    Full text link
    The manganocuprate compound Gd3Ba2Mn2Cu2O12 (Gd-3222) has been synthesized by conventional solid state reaction method and its magnetic behavior has been studied by dc and ac magnetization (M) and heat capacity (C) measurements as a function of temperature (T). This compound crystallizes in a tetragonal structure (space group I4/mmm). We find that this compound exhibits three magnetic transitions, around 2.5, 4.8 and 9 K, as inferred from dc and ac magnetic susceptibility (chi) data. However, no evidence for a well-defined lambda-anomaly is found in C(T) above 1.8 K, though there is a gradual upturn below about 10 K. An application of a magnetic field results in a peak around 5K, while ac chi appears to show a very weak frequency dependence below 9 K. Isothermal M curve at 1.8 K exhibits a weak hysteresis without any evidence for saturation even at fields as high as 120 kOe. These results imply that this compound undergoes a spin-glass-like freezing at low temperatures, though the exact nature of the magnetic transition at 10 K is not clear. The magnitude of the magnetocaloric effect, as inferred from M and C data, is quite large over a wide temperature range below 50 K peaking around 4 K.Comment: 1 PDF file, 8 Figures, 18 page

    The variational Bayesian approach to fitting mixture models to circular wave direction data

    Get PDF
    The emerging variational Bayesian (VB) technique for approximate Bayesian statistical inference is a nonsimulation- based and time-efficient approach. It provides a useful, practical alternative to other Bayesian statistical approaches such as Markov chain Monte Carlo–based techniques, particularly for applications involving large datasets. This article reviews the increasingly popular VB statistical approach and illustrates how it can be used to fit Gaussian mixture models to circular wave direction data. This is done by taking the straightforward approach of padding the data; this method involves adding a repeat of a complete cycle of the data to the existing dataset to obtain a dataset on the real line. The padded dataset can then be analyzed using the standard VB technique. This results in a practical, efficient approach that is also appropriate for modeling other types of circular, or directional, data such as wind direction

    Remote control of magnetostriction-based nanocontacts at room temperature

    Get PDF
    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb 0.3 Dy 0.7 Fe 1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature

    Origin of Polar Order in Dense Suspensions of Phototactic Micro-Swimmers

    Get PDF
    A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers

    Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons

    Full text link
    Two types of graphene nanoribbons: (a) potassium-split graphene nanoribbons (GNRs), and (b) oxidative unzipped and chemically converted graphene nanoribbons (CCGNRs) were investigated for their magnetic properties using the combination of static magnetization and electron spin resonance measurements. The two types of ribbons possess remarkably different magnetic properties. While the low temperature ferromagnet-like feature is observed in both types of ribbons, such room temperature feature persists only in potassium-split ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a 'positive exchange bias'. Electron spin resonance measurements infer that the carbon related defects may responsible for the observed magnetic behaviour in both types of ribbons. Furthermore, proton hyperfine coupling strength has been obtained from hyperfine sublevel correlation experiments performed on the GNRs. Electron spin resonance provides no indications for the presence of potassium (cluster) related signals, emphasizing the intrinsic magnetic nature of the ribbons. Our combined experimental results may infer the coexistence of ferromagnetic clusters with anti-ferromagnetic regions leading to disordered magnetic phase. We discuss the origin of the observed contrast in the magnetic behaviours of these two types of ribbons
    corecore