863 research outputs found

    A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome

    Get PDF
    Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivocan differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits

    Introduction to special section: Outstanding problems in quantifying the radiative impact of mineral dust

    Get PDF
    International audienceThis paper provides an introduction to the special section of the Journal of Geophysical Research on mineral dust. We briefly review the current experimental and theoretical approaches used to quantify the dust radiative impacts, highlight the outstanding issues, and discuss possible strategies to overcome the emerging problems. We also introduce the contributing papers of this special section. Despite the recent notable advances in dust studies, we demonstrate that the radiative effects of dust remain poorly quantified due to both limited data and incomplete understanding of relative physical and chemical processes. The foremost needs are (1) to quantify the spatial and temporal variations of dust burden in the atmosphere and develop a predictive capability for the size‐ and composition‐resolved dust particle distribution; (2) to develop a quantitative description of the processes that control the spatial and temporal variabilities of dust physical and chemical properties and radiative effects; (3) to develop new instrumentation (especially to measure the dust particle size distribution in a wide range from about 0.01 μm to 100 μm, scattering phase function and light absorption by dust particles); and (4) to develop new techniques for interpreting and merging the diverse information from satellite remote sensing, in situ and ground‐based measurements, laboratory studies, and model simulations. Because dust distribution and effects are heterogeneous, both spatially and temporally, a promising strategy to advance our knowledge is to perform comprehensive studies at the targeted regions affected by mineral dust of both natural and anthropogenic origin

    Hierarchically coupled ultradian oscillators generating robust circadian rhythms

    Get PDF
    Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase

    Microprobe Laser Mass Spectrometry Studies of Polycyclic Aromatic Hydrocarbon Distributions on Harbor Sediments and Coals

    Get PDF
    Abstract. Microprobe two-step laser mass spectrometry (μL 2 MS) was used to assess the distribution and origin of polycyclic aromatic hydrocarbons (PAHs) on sediment particles dredged from the harbor of Milwaukee, Wisconsin. PAH concentrations are largely associated with coal-derived particles and other carbonaceous environments. PAH distributions on these coal-derived particles and carbonaceous environments, which are thought to have separate origins, were found to be quite similar. μL 2 MS data of coal and thermally-processed coal showed profound differences from μL 2 MS data obtained from the coal-derived particles in the sediment. The results of these experiments indicate that the coal-derived particles are not the source of PAHs in the sediment but are scavengers of PAH contaminants in the Milwaukee Harbor sediments

    Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats

    Get PDF
    Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because—in contrast to feathered wings of birds—dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits

    Get PDF
    Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock

    Distant Voices: Learners' Stories About the Affective Side of Learning a Language at a Distance

    Get PDF
    Learning a language at a distance has its own special challenges. The remoteness of the learning context can mean isolation for the learner, communication difficulties for the teacher and problems of access for the researcher. Yet distance language learners are likely to be no more skilled in self-regulation than classroom learners, and to require high levels of support. Research tools are needed, therefore, which allow them to talk freely about their learning in order to help distance educators target support appropriately. This paper draws on data from two pilot ethnographic studies of distance language learners using think-aloud protocols to access their thought processes as they tackled two designated language tasks. They were carried out as part of a wider study in each case to investigate aspects of affect including beliefs, motivation and anxiety. The audio-taped voices provided rich insights into the advantages and disadvantages, pleasures and frustrations, comforts and anxieties of learning a language at a distance, and the strategies learners use to manage in a distance environment. The studies underlined the importance of listening to students and using their voices as a basis for discussion on improving aspects of the design and delivery of distance language courses

    Voluntary exercise can strengthen the circadian system in aged mice

    Get PDF
    Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption
    corecore