156 research outputs found

    Correlation Between Structure And C-Afm Contrast Of 180-Degree Domain Walls In Rhombohedral Bati03

    Get PDF
    Using Landau-Ginzburg-Devonshire theory we describe 180-degree domain wall structure, intrinsic energy and carrier accumulation in rhombohedral phase of BaTiO3 as a function of the wall orientation and flexoelectric coupling strength. Two types of domain wall structures (phases of the wall) exist depending on the wall orientation. The low-energy 'achiral' phase occurs in the vicinity of the {110} wall orientation and has odd polarization profile invariant with respect to inversion about the wall center. The second 'chiral' phase occurs around {211} wall orientations and corresponds to mixed parity domain walls that may be of left-handed or right-handed chirality. The transformation between the phases is abrupt, accompanied with 20-30% change of the domain wall thickness and can happen at fixed wall orientation with temperature change. We suggest that the phase transition may be detected through domain wall thickness change or by c-AFM. The structure of the domain wall is correlated to its conductivity through polarization component normal to the domain wall, which causes free carriers accumulation. Depending on the temperature and flexoelectric coupling strength relative conductivity of the wall becomes at least one order of magnitude higher than in the single-domain region, creating c-AFM contrast enhancement pronounced and detectable.Comment: 31 pages, 10 figures, Supplementary material

    Domain wall conduction in multiaxial ferroelectrics

    Full text link
    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed. The effects of the domain size, wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory for polarization combined with Poisson equation for charge distributions. Both the classical ferroelectric parameters including expansion coefficients in 2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling, inhomogeneous elastic strains and electrostriction are included in the present analysis. Spatial distributions of the ionized donors, free electrons and holes were found self-consistently using the effective mass approximation for the respective densities of states. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting across entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice

    The Interaction of an 180 degree Ferroelectric Domain Wall with a Biased Scanning Probe Microscopy Tip: Effective Wall Geometry and Thermodynamics in Ginzburg-Landau-Devonshire Theory

    Full text link
    The interaction of ferroelectric 180 degree domain wall with a strongly inhomogeneous electric field of biased Scanning Probe Microscope tip is analyzed within continuous Landau-Ginzburg-Devonshire theory. Equilibrium shape of the initially flat domain wall boundary bends, attracts or repulses from the probe apex, depending on the sign and value of the applied bias. For large tip-wall separations, the probe-induced domain nucleation is possible. The approximate analytical expressions for the polarization distribution are derived using direct variational method. The expressions provide insight how the equilibrium polarization distribution depends on the wall finite-width, correlation and depolarization effects, electrostatic potential distribution of the probe and ferroelectric material parameters.Comment: 37 pages, 9 figures, 4 Appendices, to be submitted to Phys. Rev.

    CΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° вивчСння Π²Π°Π·ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… властивостСй Π½ΠΎΠ²ΠΈΡ… 4-Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… 1,3-оксазолів, які ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 5 залишок N-ΠΌΠ΅Ρ‚ΠΈΠ»-D-Π³Π»ΡŽΠΊΠ°ΠΌΡ–Π½Ρƒ

    Get PDF
    The analysis of literature data shows the prospects of searching drugs with different biological activity among 1,3-oxazoles. Aim. To develop preparative methods of the synthesis of new 4-fuctionalized 1,3-oxazoles containing the N-methyl-D-glucamine fragment in position 5 and to study their physical, chemical and biological properties. Results and discussion. It has been found that 1,3-oxazoles reveal the vasodilatative and vasoconstrictive effect on the tonic activity of the vessels preactivated with phenylephrine depending on the concentration and the chemical structure of the compounds. The article describes the vasodilatative and vasoconstrictive efficacy of new 1,3-oxazoles compared to the known adrenolytic drug – amiodarone, and the inhibitor of potassium channels – 4-aminopyridine (pimadin).Experimental part. A number of new 4-fuctionalized 1,3-oxazoles containing the N-methyl-D-glucamine fragment in position 5 was synthesized. Their biological activity was assessed under the action of selective agonists of 1-adrenoreceptors (phenylephrine), 5HT2A-receptor (serotonin) on the isolated segments of the rat’s aorta previously constricted or by blocking potassium channels with the high potassium Krebs solution.Conclusions. It has been found that in the case of the serotonin constricted isolated aortic segments only the vasoconstriction is observed in contrast of the vessel activated with phenylephrine. If the constriction of the aortic segments is carried out with a high potassium solution, there is no vasotonic activity of 1,3-oxazole derivatives. The data obtained indicate the possible molecular mechanism of their biological activity with the participation of vascular adrenergic receptors and potassium channels, their inhibition may lead to vasodilatation at the comparatively high concentration of the compounds or vasoconstriction at the comparatively low concentration of oxazoles, respectively. Анализ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ поиска ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ биологичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ срСди 1,3-оксазолов.ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² синтСза Π½ΠΎΠ²Ρ‹Ρ… 4-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… 1,3-оксазолов, содСрТащих Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ N-ΠΌΠ΅Ρ‚ΠΈΠ»-D-глюкамина, ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΡ… Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΈ биологичСских свойств.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. ИсслСдования влияния Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 1,3-оксазола Π½Π° Ρ‚ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… фСнилэфрином сосудов выявили ΠΊΠ°ΠΊ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ, Ρ‚Π°ΠΊ ΠΈ вазоконстрикторный эффСкт соСдинСний Π² зависимости ΠΎΡ‚ ΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ химичСской структуры. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ характСристики Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΈ вазоконстрикторной эффСктивности Π½ΠΎΠ²Ρ‹Ρ… соСдинСний ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ с лСкарствСнными срСдствами Π°Π΄Ρ€Π΅Π½ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΌ Π°ΠΌΠΈΠΎΠ΄Π°Ρ€ΠΎΠ½ΠΎΠΌ ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² 4-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ½ΠΎΠΌ (ΠΏΠΈΠΌΠ°Π΄ΠΈΠ½ΠΎΠΌ).Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСн синтСз Π½ΠΎΠ²Ρ‹Ρ… 4-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… 1,3-оксазолов, содСрТащих Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ N-ΠΌΠ΅Ρ‚ΠΈΠ»-D-глюкамина ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ΠΈΡ… биологичСской активности ΠΏΡ€ΠΈ дСйствии Π½Π° ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сокращСнныС ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ сСгмСнты Π°ΠΎΡ€Ρ‚Ρ‹ крыс сСлСктивными агонистами Ξ±1-Π°Π΄Ρ€Π΅Π½ΠΎΡ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (фСнилэфрином), 5-HT2A-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (сСротонином) ΠΈΠ»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ Π±Π»ΠΎΠΊΠ°Π΄Ρ‹ ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² Π³ΠΈΠΏΠ΅Ρ€ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹ΠΌ раствором ΠšΡ€Π΅Π±ΡΠ°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² случаС ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сокращСния ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сСгмСнтов Π°ΠΎΡ€Ρ‚Ρ‹ сСротонином Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… фСнилэфрином сосудов Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ лишь вазоконстрикторноС дСйствиС, Π° ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сокращСниС сСгмСнтов Π°ΠΎΡ€Ρ‚Ρ‹ Π³ΠΈΠΏΠ΅Ρ€ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹ΠΌ раствором ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ проявлСниС любой вазотоничСской активности Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 1,3-оксазола. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ молСкулярный ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΡ… биологичСской активности с участиСм сосудистых Π°Π΄Ρ€Π΅Π½ΠΎΡ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ², ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΠΎΡΡ€Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΈΠ»Π°Ρ‚Π°Ρ†ΠΈΡŽ сосудов, которая Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ дСйствии ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ высоких ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ соСдинСний ΠΈΠ»ΠΈ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡ‚Ρ€ΠΈΠΊΡ†ΠΈΡŽ, Π²Ρ‹ΡΠ²Π»Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΠΈ дСйствии соСдинСний Π² ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Π΄ΠΎΠ·Π°Ρ…, соотвСтствСнно. Аналіз Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎΡˆΡƒΠΊΡƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Π· Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΎΡŽ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ сСрСд 1,3-оксазолів.ΠœΠ΅Ρ‚ΠΎΡŽ Π΄Π°Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ” Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² синтСзу Π½ΠΎΠ²ΠΈΡ… 4-Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… 1,3-оксазолів, які ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 5 Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ N-ΠΌΠ΅Ρ‚ΠΈΠ»-D-Π³Π»ΡŽΠΊΠ°ΠΌΡ–Π½Ρƒ, Ρ‚Π° вивчСння Ρ—Ρ… Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ– Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… властивостСй.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. ДослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1,3-оксазолу Π½Π° Ρ‚ΠΎΠ½Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ Π°ΠΊΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ… Ρ„Π΅Π½Ρ–Π»Π΅Ρ„Ρ€ΠΈΠ½ΠΎΠΌ судин виявили як Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚ΡƒΡŽΡ‡ΠΈΠΉ, Ρ‚Π°ΠΊ Ρ– вазоконстрикторний Π΅Ρ„Π΅ΠΊΡ‚ сполук Ρƒ залСТності Π²Ρ–Π΄ Ρ—Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Ρ‚Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— структури. Π£ статті Π½Π°Π²Π΅Π΄Π΅Π½Ρ– характСристики Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ‚ΠΎΡ€Π½ΠΎΡ— Ρ‚Π° вазоконстрикторної СфСктивності Π½ΠΎΠ²ΠΈΡ… сполук порівняно Π· Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΠΌΠΈ засобами Π°Π΄Ρ€Π΅Π½ΠΎΠ»Ρ–Ρ‚ΠΈΠΊΠΎΠΌ Π°ΠΌΡ–ΠΎΠ΄Π°Ρ€ΠΎΠ½ΠΎΠΌ Ρ‚Π° Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ΠΎΠΌ ΠΊΠ°Π»Ρ–Ρ”Π²ΠΈΡ… ΠΊΠ°Π½Π°Π»Ρ–Π² 4-Π°ΠΌΡ–Π½ΠΎΠΏΡ–Ρ€ΠΈΠ΄ΠΈΠ½ΠΎΠΌ (ΠΏΡ–ΠΌΠ°Π΄ΠΈΠ½ΠΎΠΌ).Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΡƒΠ² синтСзований ряд Π½ΠΎΠ²ΠΈΡ… 4-Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… 1,3-оксазолів, які ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 5 Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ N-ΠΌΠ΅Ρ‚ΠΈΠ»-D-Π³Π»ΡŽΠΊΠ°ΠΌΡ–Π½Ρƒ Ρ‚Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Ρ–Π½ΠΊΠ° Ρ—Ρ… Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності ΠΏΡ€ΠΈ Π΄Ρ–Ρ— Π½Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ скорочСні Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½Ρ– сСгмСнти Π°ΠΎΡ€Ρ‚ΠΈ Ρ‰ΡƒΡ€Ρ–Π² сСлСктивними агоністами Ξ±1-Π°Π΄Ρ€Π΅Π½ΠΎΡ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² (Ρ„Π΅Π½Ρ–Π»Π΅Ρ„Ρ€ΠΈΠ½ΠΎΠΌ), 5-HT2A-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² (сСротоніном) Π°Π±ΠΎ ΡˆΠ»ΡΡ…ΠΎΠΌ Π±Π»ΠΎΠΊΠ°Π΄ΠΈ ΠΊΠ°Π»Ρ–Ρ”Π²ΠΈΡ… ΠΊΠ°Π½Π°Π»Ρ–Π² Π³Ρ–ΠΏΠ΅Ρ€ΠΊΠ°Π»Ρ–Ρ”Π²ΠΈΠΌ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΎΠΌ ΠšΡ€Π΅Π±ΡΠ°.Висновки. ВстановлСно, Ρ‰ΠΎ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ скорочСння Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΈΡ… сСгмСнтів Π°ΠΎΡ€Ρ‚ΠΈ сСротоніном Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ Π°ΠΊΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ… Ρ„Π΅Π½Ρ–Π»Π΅Ρ„Ρ€ΠΈΠ½ΠΎΠΌ судин ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ лишС вазоконстрикторна дія, Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ” скорочСння сСгмСнтів Π°ΠΎΡ€Ρ‚ΠΈ Π³Ρ–ΠΏΠ΅Ρ€ΠΊΠ°Π»Ρ–Ρ”Π²ΠΈΠΌ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΎΠΌ Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°Ρ” вияву Π±ΡƒΠ΄ΡŒ-якої Π²Π°Π·ΠΎΡ‚ΠΎΠ½Ρ–Ρ‡Π½ΠΎΡ— активності Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1,3-оксазолу. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– Π²ΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ Π½Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΠΉ молСкулярний ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌ Ρ—Ρ… Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності Π·Π° участі судинних Π°Π΄Ρ€Π΅Π½ΠΎΡ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² Ρ‚Π° ΠΊΠ°Π»Ρ–Ρ”Π²ΠΈΡ… ΠΊΠ°Π½Π°Π»Ρ–Π², інгібування яких ΠΌΠΎΠΆΠ΅ опосСрСдковувати Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ†Ρ–ΡŽ, яка ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ Π΄Ρ–Ρ— порівняно Π±Ρ–Π»ΡŒΡˆ високих ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–ΠΉ сполук Π°Π±ΠΎ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡ‚Ρ€ΠΈΠΊΡ†Ρ–ΡŽ, виявлСну ΠΏΡ€ΠΈ Π΄Ρ–Ρ— сполук Ρƒ порівняно Π±Ρ–Π»ΡŒΡˆ Π½ΠΈΠ·ΡŒΠΊΠΈΡ… Π΄ΠΎΠ·Π°Ρ…, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits

    Full text link
    In electronics, information has been traditionally stored, processed and communicated using an electron's charge. This paradigm is increasingly turning out to be energy-inefficient, because movement of charge within an information-processing device invariably causes current flow and an associated dissipation. Replacing charge with the "spin" of an electron to encode information may eliminate much of this dissipation and lead to more energy-efficient "green electronics". This realization has spurred significant research in spintronic devices and circuits where spin either directly acts as the physical variable for hosting information or augments the role of charge. In this review article, we discuss and elucidate some of these ideas, and highlight their strengths and weaknesses. Many of them can potentially reduce energy dissipation significantly, but unfortunately are error-prone and unreliable. Moreover, there are serious obstacles to their technological implementation that may be difficult to overcome in the near term. This review addresses three constructs: (1) single devices or binary switches that can be constituents of Boolean logic gates for digital information processing, (2) complete gates that are capable of performing specific Boolean logic operations, and (3) combinational circuits or architectures (equivalent to many gates working in unison) that are capable of performing universal computation.Comment: Topical Revie

    ΠŸΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π³Ρ€ΠΈΠΏΠΏΠ° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°ΡΡ€ΠΎΠ·ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½Π°, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·

    Get PDF
    Therapeutic and antiviral efficacies of inhalations of aerosolized aprotinin, a protease inhibitor, which blocks a stage of influenza virus proteolytic activation, were studied. This clinical study was performed during winter-spring outbreak caused with pandemic Influenza H1N1pdm09. Aprotinin (a natural low molecular weight antiprotease polypeptide) is known to be a chemotherapeutic antiviral drug, which inhibits influenza virus proteolytic activation accomplished by host respiratory proteases. Patients inhaled 2 aerosol doses of aprotinin (160 Kallikrein-inhibiting Units (KIU)) each 2 hours for 5 days. In comparison group, patients were treated with ingavirin (a synthetic peptidoamine with unknown antiviral target), 90 mg per day for 5 days. About 10-fold decrease of virus load in aprotinin patients were determined in comparison to ingavirin patients. Duration of clinical symptoms, such as rhinorrhea, weakness, headache, sore throat, cough, sore thorax, fever, was 1 -2 days shorter in aprotinin then in ingavirin group. Side effects and patient discomfort were not revealed in aprotinin group patients. Aerosolized form of aprotinin can be recommended as a pathogenetic antiviral drug against Influenza caused by different viruses, including seasonal H1N1, H2N2, H3N2, swine-like H1N1pdm09, and avian-like H7N9 viruses.Π˜Π·ΡƒΡ‡Π°Π»ΠΈ Π»Π΅Ρ‡Π΅Π±Π½ΡƒΡŽ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΈΡ€ΡƒΡΠ½ΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π°ΡΡ€ΠΎΠ·ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·, Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½Π°, Π±Π»ΠΎΠΊΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ этап протСолитичСской Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ вируса Π³Ρ€ΠΈΠΏΠΏΠ° рСспираторными ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Π°ΠΌΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°-хозяина. ИсслСдованиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π·ΠΈΠΌΠ½Π΅-вСсСннСй Π²ΡΠΏΡ‹ΡˆΠΊΠΈ Π³Ρ€ΠΈΠΏΠΏΠ°, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ пандСмичСским вирусом H1N1pdm09. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΈΡ€ΡƒΡΠ½Ρ‹ΠΉ Ρ…ΠΈΠΌΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½ (ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΉ Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΡ‚Π΅Π°Π·Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄) примСнялся Π² ингаляционной Ρ„ΠΎΡ€ΠΌΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€ΡƒΡ‡Π½ΠΎΠ³ΠΎ ингалятора Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° с ΠΏΡ€ΠΎΠΏΠ΅Π»Π»Π΅Π½Ρ‚ΠΎΠΌ. Π‘ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π²Π΄Ρ‹Ρ…Π°Π»ΠΈ Π°ΡΡ€ΠΎΠ·ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½ (160 ΠšΠ°Π»Π»ΠΈΠΊΡ€Π΅ΠΈΠ½ Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π•Π΄ΠΈΠ½ΠΈΡ† (ΠšΠ˜Π•)) ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 2 часа Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 5 Π΄Π½Π΅ΠΉ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ сравнСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΈΠ½Π³Π°Π²ΠΈΡ€ΠΈΠ½ (синтСтичСский ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ°ΠΌΠΈΠ½ - противовирусный ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ с нСустановлСнной вирусной мишСнью дСйствия) : 90 ΠΌΠ³ 1 Ρ€Π°Π· Π² дСнь per os, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 5 Π΄Π½Π΅ΠΉ. УстановлСно 10-ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ сниТСниС уровня вирусной Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π² смывах ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΈΠ· Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈΠ½Π³Π°Π²ΠΈΡ€ΠΈΠ½Π°. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ сокращСниС Π½Π° 1 -2 дня ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ симптомов заболСвания (насморк, боль Π² Π³ΠΎΡ€Π»Π΅, ΡΠ»Π°Π±ΠΎΡΡ‚ΡŒ, головная боль, Π»ΠΈΡ…ΠΎΡ€Π°Π΄ΠΊΠ°, боль Π² Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅.) Π² Π³Ρ€ΡƒΠΏΠΏΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… ΠΈΠ½Π³Π°Π²ΠΈΡ€ΠΈΠ½. ΠŸΠΎΠ±ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΠΈ ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΆΠ°Π»ΠΎΠ± Π½Π° дискомфорт ΠΎΡ‚ ингаляций аэрозоля Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½Π° Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ этапа протСолитичСской Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ для размноТСния всСх ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² вируса Π³Ρ€ΠΈΠΏΠΏΠ°, ΠΈΠ½Π³Π°Π»ΡΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ½ΠΈΠ½Π° ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС патогСнСтичСского срСдства для лСчСния Π³Ρ€ΠΈΠΏΠΏΠ°, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром вирусов, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ вирусы сСзонного Π³Ρ€ΠΈΠΏΠΏΠ° субтипов Н1-Н3, пандСмичСского вируса H1N1pdm09 ΠΈ вируса ΠΏΡ‚ΠΈΡ‡ΡŒΠ΅Π³ΠΎ Π³Ρ€ΠΈΠΏΠΏΠ° H7N9

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Get PDF
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3

    Get PDF
    Lead-free piezoelectrics are becoming increasingly important in view of environmental problems of currently used lead-based perovskites such as lead zirconate titanate (PZT). One of the recent candidates for PZT replacement, solid solutions of BaZr0.2Ti0.8O3 and Ba0.7Ca0.3TiO3, are investigated in this work by piezoresponse force microscopy. Coexistence of the tetragonal and rhombohedral phases in this material is observed, which probably gives rise to easy polarization switching due to multiple domain states. The period of observed domain lamella scales with the grain size obeying well-known square root dependence characteristic of BaTiO3 ceramics. Domain switching and relaxation are investigated at the nanoscale as a function of the applied voltage and duration of the applied voltage pulses. The observed distortion of piezoresponse hysteresis loops near grain boundaries is attested to the increased concentration of defects. Nanoscale piezoelectric properties of these materials are discussed

    Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    Full text link
    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic one and the various hysteresis loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
    • …
    corecore