156 research outputs found
Correlation Between Structure And C-Afm Contrast Of 180-Degree Domain Walls In Rhombohedral Bati03
Using Landau-Ginzburg-Devonshire theory we describe 180-degree domain wall
structure, intrinsic energy and carrier accumulation in rhombohedral phase of
BaTiO3 as a function of the wall orientation and flexoelectric coupling
strength. Two types of domain wall structures (phases of the wall) exist
depending on the wall orientation. The low-energy 'achiral' phase occurs in the
vicinity of the {110} wall orientation and has odd polarization profile
invariant with respect to inversion about the wall center. The second 'chiral'
phase occurs around {211} wall orientations and corresponds to mixed parity
domain walls that may be of left-handed or right-handed chirality. The
transformation between the phases is abrupt, accompanied with 20-30% change of
the domain wall thickness and can happen at fixed wall orientation with
temperature change. We suggest that the phase transition may be detected
through domain wall thickness change or by c-AFM. The structure of the domain
wall is correlated to its conductivity through polarization component normal to
the domain wall, which causes free carriers accumulation. Depending on the
temperature and flexoelectric coupling strength relative conductivity of the
wall becomes at least one order of magnitude higher than in the single-domain
region, creating c-AFM contrast enhancement pronounced and detectable.Comment: 31 pages, 10 figures, Supplementary material
Domain wall conduction in multiaxial ferroelectrics
The conductance of domain wall structures consisting of either stripes or
cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed.
The effects of the domain size, wall tilt and curvature, on charge
accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory
for polarization combined with Poisson equation for charge distributions. Both
the classical ferroelectric parameters including expansion coefficients in
2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling,
inhomogeneous elastic strains and electrostriction are included in the present
analysis. Spatial distributions of the ionized donors, free electrons and holes
were found self-consistently using the effective mass approximation for the
respective densities of states. The proximity and size effect of the electron
and donor accumulation/depletion by thin stripe domains and cylindrical
nanodomains are revealed. In contrast to thick domain stripes and thicker
cylindrical domains, in which the carrier accumulation (and so the static
conductivity) sharply increases at the domain walls only, small nanodomains of
radius less then 5-10 correlation length appeared conducting across entire
cross-section. Implications of such conductive nanosized channels may be
promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice
The Interaction of an 180 degree Ferroelectric Domain Wall with a Biased Scanning Probe Microscopy Tip: Effective Wall Geometry and Thermodynamics in Ginzburg-Landau-Devonshire Theory
The interaction of ferroelectric 180 degree domain wall with a strongly
inhomogeneous electric field of biased Scanning Probe Microscope tip is
analyzed within continuous Landau-Ginzburg-Devonshire theory. Equilibrium shape
of the initially flat domain wall boundary bends, attracts or repulses from the
probe apex, depending on the sign and value of the applied bias. For large
tip-wall separations, the probe-induced domain nucleation is possible. The
approximate analytical expressions for the polarization distribution are
derived using direct variational method. The expressions provide insight how
the equilibrium polarization distribution depends on the wall finite-width,
correlation and depolarization effects, electrostatic potential distribution of
the probe and ferroelectric material parameters.Comment: 37 pages, 9 figures, 4 Appendices, to be submitted to Phys. Rev.
CΠΈΠ½ΡΠ΅Π· ΡΠ° Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π²Π°Π·ΠΎΠ°ΠΊΡΠΈΠ²Π½ΠΈΡ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π½ΠΎΠ²ΠΈΡ 4-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ 1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡΠ², ΡΠΊΡ ΠΌΡΡΡΡΡΡ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 5 Π·Π°Π»ΠΈΡΠΎΠΊ N-ΠΌΠ΅ΡΠΈΠ»-D-Π³Π»ΡΠΊΠ°ΠΌΡΠ½Ρ
The analysis of literature data shows the prospects of searching drugs with different biological activity among 1,3-oxazoles. Aim. To develop preparative methods of the synthesis of new 4-fuctionalized 1,3-oxazoles containing the N-methyl-D-glucamine fragment in position 5 and to study their physical, chemical and biological properties. Results and discussion. It has been found that 1,3-oxazoles reveal the vasodilatative and vasoconstrictive effect on the tonic activity of the vessels preactivated with phenylephrine depending on the concentration and the chemical structure of the compounds. The article describes the vasodilatative and vasoconstrictive efficacy of new 1,3-oxazoles compared to the known adrenolytic drug β amiodarone, and the inhibitor of potassium channels β 4-aminopyridine (pimadin).Experimental part. A number of new 4-fuctionalized 1,3-oxazoles containing the N-methyl-D-glucamine fragment in position 5 was synthesized. Their biological activity was assessed under the action of selective agonists of 1-adrenoreceptors (phenylephrine), 5HT2A-receptor (serotonin) on the isolated segments of the ratβs aorta previously constricted or by blocking potassium channels with the high potassium Krebs solution.Conclusions. It has been found that in the case of the serotonin constricted isolated aortic segments only the vasoconstriction is observed in contrast of the vessel activated with phenylephrine. If the constriction of the aortic segments is carried out with a high potassium solution, there is no vasotonic activity of 1,3-oxazole derivatives. The data obtained indicate the possible molecular mechanism of their biological activity with the participation of vascular adrenergic receptors and potassium channels, their inhibition may lead to vasodilatation at the comparatively high concentration of the compounds or vasoconstriction at the comparatively low concentration of oxazoles, respectively.Β ΠΠ½Π°Π»ΠΈΠ· Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠΈΡΠΊΠ° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΡΡΠ΅Π΄ΠΈ 1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΎΠ².Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° Π½ΠΎΠ²ΡΡ
4-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 ΡΡΠ°Π³ΠΌΠ΅Π½Ρ N-ΠΌΠ΅ΡΠΈΠ»-D-Π³Π»ΡΠΊΠ°ΠΌΠΈΠ½Π°, ΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΡ
ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ².Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»Π° Π½Π° ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π½ΠΈΠ»ΡΡΡΠΈΠ½ΠΎΠΌ ΡΠΎΡΡΠ΄ΠΎΠ² Π²ΡΡΠ²ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠΈΡΡΡΡΠΈΠΉ, ΡΠ°ΠΊ ΠΈ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΈ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½ΠΎΠ²ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Ρ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ Π°Π΄ΡΠ΅Π½ΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΌ Π°ΠΌΠΈΠΎΠ΄Π°ΡΠΎΠ½ΠΎΠΌ ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠΌ ΠΊΠ°Π»ΠΈΠ΅Π²ΡΡ
ΠΊΠ°Π½Π°Π»ΠΎΠ² 4-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠΈΠ΄ΠΈΠ½ΠΎΠΌ (ΠΏΠΈΠΌΠ°Π΄ΠΈΠ½ΠΎΠΌ).ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΡΠΈΠ½ΡΠ΅Π· Π½ΠΎΠ²ΡΡ
4-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 ΡΡΠ°Π³ΠΌΠ΅Π½Ρ N-ΠΌΠ΅ΡΠΈΠ»-D-Π³Π»ΡΠΊΠ°ΠΌΠΈΠ½Π° ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΈΡ
Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π½Π° ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡ Π°ΠΎΡΡΡ ΠΊΡΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π°Π³ΠΎΠ½ΠΈΡΡΠ°ΠΌΠΈ Ξ±1-Π°Π΄ΡΠ΅Π½ΠΎΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² (ΡΠ΅Π½ΠΈΠ»ΡΡΡΠΈΠ½ΠΎΠΌ), 5-HT2A-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² (ΡΠ΅ΡΠΎΡΠΎΠ½ΠΈΠ½ΠΎΠΌ) ΠΈΠ»ΠΈ ΠΏΡΡΠ΅ΠΌ Π±Π»ΠΎΠΊΠ°Π΄Ρ ΠΊΠ°Π»ΠΈΠ΅Π²ΡΡ
ΠΊΠ°Π½Π°Π»ΠΎΠ² Π³ΠΈΠΏΠ΅ΡΠΊΠ°Π»ΠΈΠ΅Π²ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ ΠΡΠ΅Π±ΡΠ°. ΠΡΠ²ΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² Π°ΠΎΡΡΡ ΡΠ΅ΡΠΎΡΠΎΠ½ΠΈΠ½ΠΎΠΌ Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π½ΠΈΠ»ΡΡΡΠΈΠ½ΠΎΠΌ ΡΠΎΡΡΠ΄ΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π»ΠΈΡΡ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, Π° ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² Π°ΠΎΡΡΡ Π³ΠΈΠΏΠ΅ΡΠΊΠ°Π»ΠΈΠ΅Π²ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ°Π΅Ρ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠΉ Π²Π°Π·ΠΎΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½ΠΎΠ²ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»Π°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΠΈΡ
Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Ρ ΡΡΠ°ΡΡΠΈΠ΅ΠΌ ΡΠΎΡΡΠ΄ΠΈΡΡΡΡ
Π°Π΄ΡΠ΅Π½ΠΎΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΈ ΠΊΠ°Π»ΠΈΠ΅Π²ΡΡ
ΠΊΠ°Π½Π°Π»ΠΎΠ², ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°ΡΡ Π΄ΠΈΠ»Π°ΡΠ°ΡΠΈΡ ΡΠΎΡΡΠ΄ΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΈΡ, Π²ΡΡΠ²Π»Π΅Π½Π½ΡΡ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π² ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ
Π΄ΠΎΠ·Π°Ρ
, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.Β ΠΠ½Π°Π»ΡΠ· Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄Π°Π½ΠΈΡ
ΡΠ²ΡΠ΄ΡΠΈΡΡ ΠΏΡΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎΡΡΠΊΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² Π· ΡΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½ΠΎΡ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠ΅ΡΠ΅Π΄ 1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡΠ².ΠΠ΅ΡΠΎΡ Π΄Π°Π½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Ρ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠ° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΡΠΈΠ½ΡΠ΅Π·Ρ Π½ΠΎΠ²ΠΈΡ
4-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡΠ², ΡΠΊΡ ΠΌΡΡΡΡΡΡ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 5 ΡΡΠ°Π³ΠΌΠ΅Π½Ρ N-ΠΌΠ΅ΡΠΈΠ»-D-Π³Π»ΡΠΊΠ°ΠΌΡΠ½Ρ, ΡΠ° Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΡ
ΡΡΠ·ΠΈΠΊΠΎ-Ρ
ΡΠΌΡΡΠ½ΠΈΡ
Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π²ΠΏΠ»ΠΈΠ²Ρ Π½ΠΎΠ²ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ Π½Π° ΡΠΎΠ½ΡΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π°ΠΊΡΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅Π½ΡΠ»Π΅ΡΡΠΈΠ½ΠΎΠΌ ΡΡΠ΄ΠΈΠ½ Π²ΠΈΡΠ²ΠΈΠ»ΠΈ ΡΠΊ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΡΡΡΠΈΠΉ, ΡΠ°ΠΊ Ρ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½ΠΈΠΉ Π΅ΡΠ΅ΠΊΡ ΡΠΏΠΎΠ»ΡΠΊ Ρ Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡΡ Π²ΡΠ΄ ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΡΡ ΡΠ° Ρ
ΡΠΌΡΡΠ½ΠΎΡ ΡΡΡΡΠΊΡΡΡΠΈ. Π£ ΡΡΠ°ΡΡΡ Π½Π°Π²Π΅Π΄Π΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΠΎΡΠ½ΠΎΡ ΡΠ° Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½ΠΎΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½ΠΎΠ²ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ Π· Π»ΡΠΊΠ°ΡΡΡΠΊΠΈΠΌΠΈ Π·Π°ΡΠΎΠ±Π°ΠΌΠΈ Π°Π΄ΡΠ΅Π½ΠΎΠ»ΡΡΠΈΠΊΠΎΠΌ Π°ΠΌΡΠΎΠ΄Π°ΡΠΎΠ½ΠΎΠΌ ΡΠ° ΡΠ½Π³ΡΠ±ΡΡΠΎΡΠΎΠΌ ΠΊΠ°Π»ΡΡΠ²ΠΈΡ
ΠΊΠ°Π½Π°Π»ΡΠ² 4-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠΈΠ΄ΠΈΠ½ΠΎΠΌ (ΠΏΡΠΌΠ°Π΄ΠΈΠ½ΠΎΠΌ).ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π° ΡΠ°ΡΡΠΈΠ½Π°. ΠΡΠ² ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ΄ Π½ΠΎΠ²ΠΈΡ
4-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»ΡΠ², ΡΠΊΡ ΠΌΡΡΡΡΡΡ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 5 ΡΡΠ°Π³ΠΌΠ΅Π½Ρ N-ΠΌΠ΅ΡΠΈΠ»-D-Π³Π»ΡΠΊΠ°ΠΌΡΠ½Ρ ΡΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΡΠ½ΠΊΠ° ΡΡ
Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ Π΄ΡΡ Π½Π° ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎ ΡΠΊΠΎΡΠΎΡΠ΅Π½Ρ ΡΠ·ΠΎΠ»ΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΈ Π°ΠΎΡΡΠΈ ΡΡΡΡΠ² ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ Π°Π³ΠΎΠ½ΡΡΡΠ°ΠΌΠΈ Ξ±1-Π°Π΄ΡΠ΅Π½ΠΎΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡΠ² (ΡΠ΅Π½ΡΠ»Π΅ΡΡΠΈΠ½ΠΎΠΌ), 5-HT2A-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡΠ² (ΡΠ΅ΡΠΎΡΠΎΠ½ΡΠ½ΠΎΠΌ) Π°Π±ΠΎ ΡΠ»ΡΡ
ΠΎΠΌ Π±Π»ΠΎΠΊΠ°Π΄ΠΈ ΠΊΠ°Π»ΡΡΠ²ΠΈΡ
ΠΊΠ°Π½Π°Π»ΡΠ² Π³ΡΠΏΠ΅ΡΠΊΠ°Π»ΡΡΠ²ΠΈΠΌ ΡΠΎΠ·ΡΠΈΠ½ΠΎΠΌ ΠΡΠ΅Π±ΡΠ°.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎΠ³ΠΎ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½Ρ ΡΠ·ΠΎΠ»ΡΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ² Π°ΠΎΡΡΠΈ ΡΠ΅ΡΠΎΡΠΎΠ½ΡΠ½ΠΎΠΌ Π½Π° Π²ΡΠ΄ΠΌΡΠ½Ρ Π²ΡΠ΄ Π°ΠΊΡΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅Π½ΡΠ»Π΅ΡΡΠΈΠ½ΠΎΠΌ ΡΡΠ΄ΠΈΠ½ ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°ΡΡΡΡΡ Π»ΠΈΡΠ΅ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠ½Π° Π΄ΡΡ, Π° ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½Ρ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½Ρ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡΠ² Π°ΠΎΡΡΠΈ Π³ΡΠΏΠ΅ΡΠΊΠ°Π»ΡΡΠ²ΠΈΠΌ ΡΠΎΠ·ΡΠΈΠ½ΠΎΠΌ Π·Π°ΠΏΠΎΠ±ΡΠ³Π°Ρ Π²ΠΈΡΠ²Ρ Π±ΡΠ΄Ρ-ΡΠΊΠΎΡ Π²Π°Π·ΠΎΡΠΎΠ½ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½ΠΎΠ²ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
1,3-ΠΎΠΊΡΠ°Π·ΠΎΠ»Ρ. ΠΡΡΠΈΠΌΠ°Π½Ρ Π΄Π°Π½Ρ Π²ΠΊΠ°Π·ΡΡΡΡ Π½Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΈΠΉ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌ ΡΡ
Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π·Π° ΡΡΠ°ΡΡΡ ΡΡΠ΄ΠΈΠ½Π½ΠΈΡ
Π°Π΄ΡΠ΅Π½ΠΎΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡΠ² ΡΠ° ΠΊΠ°Π»ΡΡΠ²ΠΈΡ
ΠΊΠ°Π½Π°Π»ΡΠ², ΡΠ½Π³ΡΠ±ΡΠ²Π°Π½Π½Ρ ΡΠΊΠΈΡ
ΠΌΠΎΠΆΠ΅ ΠΎΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΊΠΎΠ²ΡΠ²Π°ΡΠΈ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΡΡ, ΡΠΊΠ° ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°ΡΡΡΡΡ ΠΏΡΠΈ Π΄ΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ Π±ΡΠ»ΡΡ Π²ΠΈΡΠΎΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΡΠΉ ΡΠΏΠΎΠ»ΡΠΊ Π°Π±ΠΎ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΡΡ, Π²ΠΈΡΠ²Π»Π΅Π½Ρ ΠΏΡΠΈ Π΄ΡΡ ΡΠΏΠΎΠ»ΡΠΊ Ρ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ Π±ΡΠ»ΡΡ Π½ΠΈΠ·ΡΠΊΠΈΡ
Π΄ΠΎΠ·Π°Ρ
, Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ
First-principles investigation of 180-degree domain walls in BaTiO_3
We present a first-principles study of 180-degree ferroelectric domain walls
in tetragonal barium titanate. The theory is based on an effective Hamiltonian
that has previously been determined from first-principles
ultrasoft-pseudopotential calculations. Statistical properties are investigated
using Monte Carlo simulations. We compute the domain-wall energy, free energy,
and thickness, analyze the behavior of the ferroelectric order parameter in the
interior of the domain wall, and study its spatial fluctuations. An abrupt
reversal of the polarization is found, unlike the gradual rotation typical of
the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version
in two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal
Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits
In electronics, information has been traditionally stored, processed and
communicated using an electron's charge. This paradigm is increasingly turning
out to be energy-inefficient, because movement of charge within an
information-processing device invariably causes current flow and an associated
dissipation. Replacing charge with the "spin" of an electron to encode
information may eliminate much of this dissipation and lead to more
energy-efficient "green electronics". This realization has spurred significant
research in spintronic devices and circuits where spin either directly acts as
the physical variable for hosting information or augments the role of charge.
In this review article, we discuss and elucidate some of these ideas, and
highlight their strengths and weaknesses. Many of them can potentially reduce
energy dissipation significantly, but unfortunately are error-prone and
unreliable. Moreover, there are serious obstacles to their technological
implementation that may be difficult to overcome in the near term.
This review addresses three constructs: (1) single devices or binary switches
that can be constituents of Boolean logic gates for digital information
processing, (2) complete gates that are capable of performing specific Boolean
logic operations, and (3) combinational circuits or architectures (equivalent
to many gates working in unison) that are capable of performing universal
computation.Comment: Topical Revie
ΠΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π³ΡΠΈΠΏΠΏΠ° Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°ΡΡΠΎΠ·ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½Π°, ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΠΏΡΠΎΡΠ΅Π°Π·
Therapeutic and antiviral efficacies of inhalations of aerosolized aprotinin, a protease inhibitor, which blocks a stage of influenza virus proteolytic activation, were studied. This clinical study was performed during winter-spring outbreak caused with pandemic Influenza H1N1pdm09. Aprotinin (a natural low molecular weight antiprotease polypeptide) is known to be a chemotherapeutic antiviral drug, which inhibits influenza virus proteolytic activation accomplished by host respiratory proteases. Patients inhaled 2 aerosol doses of aprotinin (160 Kallikrein-inhibiting Units (KIU)) each 2 hours for 5 days. In comparison group, patients were treated with ingavirin (a synthetic peptidoamine with unknown antiviral target), 90 mg per day for 5 days. About 10-fold decrease of virus load in aprotinin patients were determined in comparison to ingavirin patients. Duration of clinical symptoms, such as rhinorrhea, weakness, headache, sore throat, cough, sore thorax, fever, was 1 -2 days shorter in aprotinin then in ingavirin group. Side effects and patient discomfort were not revealed in aprotinin group patients. Aerosolized form of aprotinin can be recommended as a pathogenetic antiviral drug against Influenza caused by different viruses, including seasonal H1N1, H2N2, H3N2, swine-like H1N1pdm09, and avian-like H7N9 viruses.ΠΠ·ΡΡΠ°Π»ΠΈ Π»Π΅ΡΠ΅Π±Π½ΡΡ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π°ΡΡΠΎΠ·ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΠΏΡΠΎΡΠ΅Π°Π·, Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½Π°, Π±Π»ΠΎΠΊΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΡΠ°ΠΏ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ° ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅Π°Π·Π°ΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°-Ρ
ΠΎΠ·ΡΠΈΠ½Π°. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·ΠΈΠΌΠ½Π΅-Π²Π΅ΡΠ΅Π½Π½Π΅ΠΉ Π²ΡΠΏΡΡΠΊΠΈ Π³ΡΠΈΠΏΠΏΠ°, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²ΠΈΡΡΡΠΎΠΌ H1N1pdm09. ΠΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΠΉ Ρ
ΠΈΠΌΠΈΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½ (ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠΉ Π°Π½ΡΠΈΠΏΡΠΎΡΠ΅Π°Π·Π½ΡΠΉ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡΠΈΠ΄) ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΡΡ Π² ΠΈΠ½Π³Π°Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π³Π°Π»ΡΡΠΎΡΠ° Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Ρ ΠΏΡΠΎΠΏΠ΅Π»Π»Π΅Π½ΡΠΎΠΌ. ΠΠΎΠ»ΡΠ½ΡΠ΅ Π²Π΄ΡΡ
Π°Π»ΠΈ Π°ΡΡΠΎΠ·ΠΎΠ»ΡΠ½ΡΠΉ Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½ (160 ΠΠ°Π»Π»ΠΈΠΊΡΠ΅ΠΈΠ½ ΠΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠΈΡ
ΠΠ΄ΠΈΠ½ΠΈΡ (ΠΠΠ)) ΠΊΠ°ΠΆΠ΄ΡΠ΅ 2 ΡΠ°ΡΠ° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 5 Π΄Π½Π΅ΠΉ. Π Π³ΡΡΠΏΠΏΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΈΠ½Π³Π°Π²ΠΈΡΠΈΠ½ (ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ°ΠΌΠΈΠ½ - ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΠΉ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Ρ Π½Π΅ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ) : 90 ΠΌΠ³ 1 ΡΠ°Π· Π² Π΄Π΅Π½Ρ per os, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 5 Π΄Π½Π΅ΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ 10-ΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ Π²ΠΈΡΡΡΠ½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ Π² ΡΠΌΡΠ²Π°Ρ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈΠ· Π³ΡΡΠΏΠΏΡ ΠΈΠ½Π³Π°Π²ΠΈΡΠΈΠ½Π°. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π½Π° 1 -2 Π΄Π½Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ (Π½Π°ΡΠΌΠΎΡΠΊ, Π±ΠΎΠ»Ρ Π² Π³ΠΎΡΠ»Π΅, ΡΠ»Π°Π±ΠΎΡΡΡ, Π³ΠΎΠ»ΠΎΠ²Π½Π°Ρ Π±ΠΎΠ»Ρ, Π»ΠΈΡ
ΠΎΡΠ°Π΄ΠΊΠ°, Π±ΠΎΠ»Ρ Π² Π³ΡΡΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠ΅.) Π² Π³ΡΡΠΏΠΏΠ΅, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Π² Π³ΡΡΠΏΠΏΠ΅, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
ΠΈΠ½Π³Π°Π²ΠΈΡΠΈΠ½. ΠΠΎΠ±ΠΎΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΈ ΡΡΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΆΠ°Π»ΠΎΠ± Π½Π° Π΄ΠΈΡΠΊΠΎΠΌΡΠΎΡΡ ΠΎΡ ΠΈΠ½Π³Π°Π»ΡΡΠΈΠΉ Π°ΡΡΠΎΠ·ΠΎΠ»Ρ Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½Π° Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ. ΠΡΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΡΠ°ΠΏΠ° ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π΄Π»Ρ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅Ρ
ΡΡΠ°ΠΌΠΌΠΎΠ² Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ°, ΠΈΠ½Π³Π°Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΠΎΡΠΌΡ Π°ΠΏΡΠΎΡΠΈΠ½ΠΈΠ½Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π° Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π³ΡΠΈΠΏΠΏΠ°, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠΎΠΊΠΈΠΌ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌ Π²ΠΈΡΡΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ Π²ΠΈΡΡΡΡ ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ³ΠΎ Π³ΡΠΈΠΏΠΏΠ° ΡΡΠ±ΡΠΈΠΏΠΎΠ² Π1-Π3, ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΈΡΡΡΠ° H1N1pdm09 ΠΈ Π²ΠΈΡΡΡΠ° ΠΏΡΠΈΡΡΠ΅Π³ΠΎ Π³ΡΠΈΠΏΠΏΠ° H7N9
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3
Lead-free piezoelectrics are becoming increasingly important in view of environmental problems of currently used lead-based perovskites such as lead zirconate titanate (PZT). One of the recent candidates for PZT replacement, solid solutions of BaZr0.2Ti0.8O3 and Ba0.7Ca0.3TiO3, are investigated in this work by piezoresponse force microscopy. Coexistence of the tetragonal and rhombohedral phases in this material is observed, which probably gives rise to easy polarization switching due to multiple domain states. The period of observed domain lamella scales with the grain size obeying well-known square root dependence characteristic of BaTiO3 ceramics. Domain switching and relaxation are investigated at the nanoscale as a function of the applied voltage and duration of the applied voltage pulses. The observed distortion of piezoresponse hysteresis loops near grain boundaries is attested to the increased concentration of defects. Nanoscale piezoelectric properties of these materials are discussed
Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects
We have proposed the phenomenological description of dielectric hysteresis
loops in ferroelectric semiconductors with charged defects and prevailing
extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and
shown that the macroscopic state of the aforementioned inhomogeneous system can
be described by three coupled equations for three order parameters. Both the
experimentally observed coercive field values well below the thermodynamic one
and the various hysteresis loop deformations (constricted and double loops)
have been obtained in the framework of our model. The obtained results
quantitatively explain the ferroelectric switching in such ferroelectric
materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
- β¦