3,842 research outputs found
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
The results of vacuum-arc deposition of thin ZrO₂coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment
Dynamics of thermoelastic thin plates: A comparison of four theories
Four distinct theories describing the flexural motion of thermoelastic thin
plates are compared. The theories are due to Chadwick, Lagnese and Lions,
Simmonds, and Norris. Chadwick's theory requires a 3D spatial equation for the
temperature but is considered the most accurate as the others are derivable
from it by different approximations. Attention is given to the damping of
flexural waves. Analytical and quantitative comparisons indicate that the
Lagnese and Lions model with a 2D temperature equation captures the essential
features of the thermoelastic damping, but contains systematic inaccuracies.
These are attributable to the approximation for the first moment of the
temperature used in deriving the Lagnese and Lions equation. Simmonds' model
with an explicit formula for temperature in terms of plate deflection is the
simplest of all but is accurate only at low frequency, where the damping is
linearly proportional to the frequency. It is shown that the Norris model,
which is almost as simple as Simmond's, is as accurate as the more precise but
involved theory of Chadwick.Comment: 2 figures, 1 tabl
Conformational transitions of heteropolymers in dilute solutions
In this paper we extend the Gaussian self-consistent method to permit study
of the equilibrium and kinetics of conformational transitions for
heteropolymers with any given primary sequence. The kinetic equations earlier
derived by us are transformed to a form containing only the mean squared
distances between pairs of monomers. These equations are further expressed in
terms of instantaneous gradients of the variational free energy. The method
allowed us to study exhaustively the stability and conformational structure of
some periodic and random aperiodic sequences. A typical phase diagram of a
fairly long amphiphilic heteropolymer chain is found to contain phases of the
extended coil, the homogeneous globule, the micro-phase separated globule, and
a large number of frustrated states, which result in conformational phases of
the random coil and the frozen globule. We have also found that for a certain
class of sequences the frustrated phases are suppressed. The kinetics of
folding from the extended coil to the globule proceeds through non-equilibrium
states possessing locally compacted, but partially misfolded and frustrated,
structure. This results in a rather complicated multistep kinetic process
typical of glassy systems.Comment: 15 pages, RevTeX, 20 ps figures, accepted for publication in Phys.
Rev.
Vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under axial loads and end moments
A finite element model with seven degrees of freedom per node is developed to study vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under constant axial loads and equal end moments. This model is based on the classical lamination theory, and accounts for all the structural coupling coming from material anisotropy. The governing differential equations are derived from the Hamilton’s principle. Numerical results are obtained for thin-walled composite I-beams to investigate the effects of axial force, bending moment and fiber orientation on the buckling moments, natural frequencies, and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves
In-vivo Studies of Ultrasound-activated Drug-loaded Porous Silicon Nanoparticles for Cancer Therapy Application
It is investigated the therapeutic efficacy of combined action of ultrasound and porous silicon nanoparticles loaded with anticancer drug doxorubicin by using an experimental cancer model of lung Lewis carcinoma in vivo. Time dependences of growth of the primary tumor with introduced nanoparticles and without them, as well as the life span of mice after exposure to therapeutic ultrasound with intensity of 1W/cm2 and frequency of 1 MHz were studied. The obtained results show the effectiveness of inhibiting the growth of primary tumor site, as well as slowing the process of metastasis, in the case of combined action of ultrasound and drug-loaded porous silicon nanoparticles that indicates the prospect of latter as sonosensitizers and nanocontainers for the delivery and controlled release of drugs in sonodynamic therapy of malignant tumors.
Keywords: silicon nanoparticles, nanocontainers, medical ultrasound, sonodynamic therapy, sonosensitizer
Критерии выбора параметров модельной частицы механических примесей для построения модели отстаивания авиатоплива и масел
Model contamination particle choice criterions questions for aviation fuel and oil sedimentation modeling are observed.Рассматриваются вопросы выбора критериев модельной частицы загрязнения для математического описания процесса отстаивания авиатоплива и масел
Dynamic Behavior in Piezoresponse Force Microscopy
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM)
implemented on a beam-deflection atomic force microscope (AFM) is analyzed
using a combination of modeling and experimental measurements. The PFM signal
comprises contributions from local electrostatic forces acting on the tip,
distributed forces acting on the cantilever, and three components of the
electromechanical response vector. These interactions result in the bending and
torsion of the cantilever, detected as vertical and lateral PFM signals. The
relative magnitudes of these contributions depend on geometric parameters of
the system, the stiffness and frictional forces of tip-surface junction, and
operation frequencies. The dynamic signal formation mechanism in PFM is
analyzed and conditions for optimal PFM imaging are formulated. The
experimental approach for probing cantilever dynamics using frequency-bias
spectroscopy and deconvolution of electromechanical and electrostatic contrast
is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques
Wavelet treatment of the intra-chain correlation functions of homopolymers in dilute solutions
Discrete wavelets are applied to parametrization of the intra-chain two-point
correlation functions of homopolymers in dilute solutions obtained from Monte
Carlo simulation. Several orthogonal and biorthogonal basis sets have been
investigated for use in the truncated wavelet approximation. Quality of the
approximation has been assessed by calculation of the scaling exponents
obtained from des Cloizeaux ansatz for the correlation functions of
homopolymers with different connectivities in a good solvent. The resulting
exponents are in a better agreement with those from the recent renormalisation
group calculations as compared to the data without the wavelet denoising. We
also discuss how the wavelet treatment improves the quality of data for
correlation functions from simulations of homopolymers at varied solvent
conditions and of heteropolymers.Comment: RevTeX, 19 pages, 7 PS figures. Accepted for publication in PR
Роль протеолитических систем стромы в опухолевой прогрессии (обзор)
Oncological diseases belong to life-threatening pathologies being the second most frequent cause of morbidity and mortality after cardiovascular diseases. Clarification of carcinogenesis mechanisms makes it possible to expand the stock of tools available for prevention of critical illness accompanying this pathological condition.Nowadays, proteolytic systems of tumor microenvironment (ТМЕ) are regarded as key regulators of a tumor progression including tumor growth, invasion and metastazing. The review discusses ТМЕ structure and role in cancer progression.Recent data decipher the role of proteolytic systems in the interaction stromal cells with tumor cells in different types of cancer in humans. The most known proteolytic systems contributed to cancer progression are matrix metalloproteinase system (MMP), urokinase-type plasminogen activator system (uPA-system), various cathepsins, granzymes, and elastase. Inhibition of extracellular proteolysis in the course of an oncological process is considered an effective approach to cancer therapy.Онкологические заболевания являются жизнеугрожающей патологией, занимающей второе место среди причин заболеваемости и смертности после сердечно-сосудистых заболеваний. Выяснение механизмов процесса канцерогенеза позволяет расширить арсенал средств для предупреждения развития критических состояний при этой патологии.В настоящее время протеолитические системы опухолевого микроокружения (ОМ) рассматриваются в качестве ключевых регуляторов процессов опухолевой прогрессии, обеспечивающих опухолевый рост, инвазию и метастазирование.В обзоре рассмотрены структура и роль ОМ в прогрессии опухоли. Приводятся современные данные о роли протеолитических систем во взаимодействии клеток стромы с клетками опухоли при различных типах рака человека.Наиболее изученными протеолитическими системами, вовлеченными в опухолевую прогрессию, являются система матриксных металлопротеиназ (ММП), системы активатора плазминогена урокиназного типа (uPA-система), а также различные катепсины, гранзимы и эластаза. Ингибирование внеклеточного протеолиза при развитии онкологического процесса рассматривается в качестве действенного подхода в терапии рака
- …