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Vibration and buckling of thin-walled composite I-beams with arbitrary1

lay-ups under axial loads and end moments2

Thuc Phuong Vo∗ and Jaehong Lee†3

Department of Architectural Engineering, Sejong University4

98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea5

(Dated: April 21, 2011)6

A finite element model with seven degrees of freedom per node is developed to

study vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups

under constant axial loads and equal end moments. This model is based on the classical

lamination theory, and accounts for all the structural coupling coming from material anisotropy.

The governing differential equations are derived from the Hamilton’s principle. Numerical results

are obtained for thin-walled composite I-beams to investigate the effects of axial force, bending

moment and fiber orientation on the buckling moments, natural frequencies and corresponding

vibration mode shapes as well as axial-moment-frequency interaction curves.

Keywords: Thin-walled composite I-beams; fiber orientation; axial loads; end moments; axial-moment-frequency7

interaction curves8

1. INTRODUCTION9

Fiber-reinforced composite materials have been used over the past few decades in numerous types10

of structures. Composites have many desirable characteristics, such as high ratio of stiffness and strength to weight,11

corrosion resistance and magnetic transparency. Thin-walled structural shapes made up of composite materials, which12

are usually produced by pultrusion, are being increasingly used in many civil, mechanical and aerospace engineering13

applications. However, it is well known that thin-walled composite structures might be under axial force and moment14

simultaneously when used in above applications and are very susceptible to flexural-torsional/lateral buckling and15

display complex vibrational behavior. Therefore, the behavior and accurate prediction of their stability16

and dynamic characteristics are of critical importance in the design of composite structures.17

The theory of thin-walled members made of isotropic materials was first developed by Vlasov [1] and Gjelsvik [2].18

Since the early works of Bleich et al. [3] and Timoshenko et al. [4,5], investigations into vibration and buckling19
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analyses of thin-walled beams subject simultaneously to axial loads and moments at both ends have20

been carried out extensively and only few are mentioned herein. Analytical solutions for the stability21

and vibrational behavior of thin-walled beams under combined loads have been performed by several22

authors. Joshi and Suryanarayan [6,7] derived solutions for coupled flexural-torsional vibration and instability. They23

found that the problem could be reduced to a beam-column problem with a zero moment, so that it was possible24

to obtain simple algebraic expressions unifying numerical results for various boundary conditions. Pavlovic et al. [8]25

obtained closed form analytical solutions for elastic stability problem of simply supported thin-walled beams subjected26

to time-dependent stochastic axial loads and end moments. Mohri et al [9] proposed analytical solutions for lateral27

buckling of simply supported bi-symmetric I-beams under combined bending and axial forces. Besides, the finite28

element method has been widely used because of its versatility and efficiency. Mohri et al. [10] presented a higher-29

order non shear deformable model to investigate the dynamic behavior of thin-walled open sections in the pre- and30

post-buckling state. Voros [11] analyzed the free vibration and mode shapes of straight beams where the coupling31

between the bending and torsion was induced by steady state lateral loads. As an alternative numerical method, the32

boundary element method [12-14] was developed to solve the vibration and buckling problems of the homogeneous or33

composite beams. The method overcomes the shortcoming of possible thin tube theory solution, which its utilization34

had been proven to be prohibitive even in thin-walled homogeneous sections. Another effective approach for solving35

stability and dynamic problems of thin-walled beams is to develop the dynamic stiffness matrix based on the solution36

of simultaneous ordinary differential equations. By using the power series method, Leung [15-18], developed the exact37

dynamic stiffness matrix including both the axial force, initial torque and bending moment for axial-lateral-torsional38

vibration, axial-torsional and axial-moment buckling analysis of framed structures. For thin-walled composite beams,39

with the presence of the additional coupling effects from material anisotropy, these members under axial force and40

moment simultaneously exhibit strong coupling. Therefore, their elastic stability behavior becomes more complicated41

than isotropic material even for doubly symmetric cross-section. Although several authors have investigated42

the free vibration characteristics of axially loaded thin-walled composite beams (Bank and Kao [19],43

Banerjee et al. [20,21], Li et al. [22,23], Kaya and Ozgumus [24] and Kim et al. [25,26]), the existing44

literature reveals that studies of vibration and/or buckling of thin-walled composite beams under45

axial force and bending moment in a unitary manner are limited. Recently, Machado [27] derived46

analytical solutions for the lateral stability analysis of cross-ply laminated thin-walled beams subjected47

to combined axial and bending loads. Based on shear deformability, the theory was formulated in48
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the context of large displacements and rotations, considering moderate bending rotations and large49

twist. However, composite was assumed to be made of symmetric balanced laminates and especially50

orthotropic laminates.51

In previous works, Lee and Kim [28-30] focused separately the effect of axial loads on flexural-52

torsional buckling and bending loads on lateral buckling as well as free vibration of thin-walled com-53

posite I-beams with arbitrary lay-ups. This paper further investigates the effect of both axial loads54

and end moments on vibration and buckling of these beams. Axial-moment, load-frequency and axial-55

moment-frequency interaction curves with respect to the fiber angle change are presented. The duality56

among the buckling loads, buckling moments and natural frequencies is studied. This model is based on57

the classical lamination theory, and accounts for all the structural coupling coming from the material anisotropy. The58

governing differential equations for flexural-torsional coupled vibration and buckling are derived from the Hamilton’s59

principle. A displacement-based one-dimensional finite element model with seven degrees of freedom per node60

is developed to solve the problem. Numerical results are obtained for thin-walled composite I-beams to investigate61

the effects of axial force, bending moment and fiber orientation on the buckling moments, natural frequencies and62

corresponding vibration mode shapes as well as interaction curves.63

2. KINEMATICS64

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually65

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and66

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second67

coordinate system is the local plate coordinate (n, s, z) as shown in Fig. 1, wherein the n axis is normal to the middle68

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the69

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ. As defined70

in Fig. 1 a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z axis is71

called the pole axis.72

To derive the analytical model for thin-walled open-section composite beams, the following assumptions are73

made:74

1. The contour of the thin wall does not deform in its own plane.75
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2. The linear shear strain γ̄sz of the middle surface is zero in each element.76

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled77

beams.78

4. Each laminate is thin and perfectly bonded.79

5. Linear vibration and buckling analysis is examined.80

6. Local buckling is not considered.81

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate82

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the83

rotation angle Φ about the pole axis,84

ū(s, z) = U(z) sin θ(s)− V (z) cos θ(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the85

assumption 2. For each element of middle surface, the shear strain become86

γ̄sz =
∂v̄

∂z
+
∂w̄

∂s
= 0 (2)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,87

w̄(s, z) = W (z)− U ′(z)x(s)− V ′(z)y(s)− Φ′(z)ω(s) (3)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W is an integration function88

that represents the average axial displacement of the beam in the z direction; x and y are the coordinates89

of the contour in the (x, y, z) coordinate system; and ω is the so-called sectorial coordinate or warping function given90

by91

ω(s) =

∫ s

s◦

r(s)ds (4)

The displacement components u, v, w representing the deformation of any generic point on the profile section are given92

with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.93

u(s, z, n) = ū(s, z) (5a)

v(s, z, n) = v̄(s, z)− n
∂ū(s, z)

∂s
(5b)

w(s, z, n) = w̄(s, z)− n
∂ū(s, z)

∂z
(5c)
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The non-zero strains associated with the small-displacement theory of elasticity are given by94

ϵz =
∂w

∂z
= ϵ̄z + nκ̄z (6a)

γsz =
∂v

∂z
+
∂w

∂s
= nκ̄sz (6b)

where95

ϵ̄z =
∂w̄

∂z
= ϵ◦z + xκy + yκx + ωκω (7a)

κ̄z = −
∂2ū

∂z2
= κy sin θ − κx cos θ − κωq (7b)

κ̄sz = −2
∂2ū

∂s∂z
= κsz (7c)

The resulting strains can be obtained from Eqs.(6) and (7) as96

ϵz = ϵ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω (8a)

γsz = nκsz (8b)

where ϵ◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x and y direction, warping curvature with97

respect to the shear center, and twisting curvature in the beam, respectively defined as98

ϵ◦z = W ′ (9a)

κx = −V ′′ (9b)

κy = −U ′′ (9c)

κω = −Φ′′ (9d)

κsz = 2Φ′ (9e)

3. VARIATIONAL FORMULATION99

The total potential energy of the system can be stated as100

Π = U + V (10)

where U is the strain energy101

U =
1

2

∫

v

(σzϵz + σszγsz)dv (11)
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After substituting Eq.(8) into Eq.(11)102

U =
1

2

∫

v

{

σz

[

ϵ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω

]

+ σsznκsz

}

dv (12)

The variation of strain energy can be stated as103

δU =

∫ l

0

(Nzδϵz +Myδκy +Mxδκx +Mωδκω +Mtδκsz)dz (13)

where Nz,Mx,My,Mω,Mt are axial force, bending moments in the x- and y-direction, warping moment (bimoment),104

and torsional moment, respectively, defined by integrating over the cross-sectional area A as105

Nz =

∫

A

σzdsdn (14a)

My =

∫

A

σz(x+ n sin θ)dsdn (14b)

Mx =

∫

A

σz(y − n cos θ)dsdn (14c)

Mω =

∫

A

σz(ω − nq)dsdn (14d)

Mt =

∫

A

σszndsdn (14e)

The potential of in-plane loads V due to transverse deflection106

V =
1

2

∫

v

σ0

z

[

(u′)2 + (v′)2
]

dv (15)

where σ0

z is the averaged constant in-plane edge axial stress of beams loaded initially by equal and opposite axial107

forces P0 and uniform bending moment applied about its major axis M0

x at two ends, defined by108

σ0

z =
P0

A
−
M0

xy

Ix
(16)

The variation of the potential of in-plane loads at the centroid is expressed by substituting the assumed displacement109

field into Eq.(15) as110

δV =

∫

v

(
P0

A
−
M0

xy

Ix
)

[

U ′δU ′ + V ′δV ′ + (q2 + r2 + 2rn+ n2)Φ′δΦ′

+ (Φ′δU ′ + U ′δΦ′)
[

n cos θ − (y − yp)
]

+ (Φ′δV ′ + V ′δΦ′)
[

n cos θ + (x− xp)
]

]

dv (17)

The kinetic energy of the system is given by111

T =
1

2

∫

v

ρ(u̇2 + v̇2 + ẇ2)dv (18)

where ρ is a density.112
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The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(18) as113

δT =

∫

v

ρ

{

U̇δU̇ + V̇ δV̇ + Ẇ δẆ + (q2 + r2 + 2rn+ n2)Φ̇δΦ̇ + (Φ̇δU̇ + U̇δΦ̇)
[

n cos θ − (y − yp)
]

+ (Φ̇δV̇ + V̇ δΦ̇)
[

n cos θ + (x− xp)
]

}

dv (19)

In order to derive the equations of motion, Hamilton’s principle is used114

δ

∫ t2

t1

(T −Π)dt = 0 (20)

Substituting Eqs.(13),(17) and (19) into Eq.(20), the following weak statement is obtained115

0 =

∫ t2

t1

∫ l

0

{

m0Ẇ δẆ +
[

m0U̇ + (mc +m0yp)Φ̇
]

δU̇ +
[

m0V̇ + (ms −m0xp)Φ̇
]

δV̇

+
[

(mc +m0yp)U̇ + (ms −m0xp)V̇ + (mp +m2 + 2mω)Φ̇
]

δΦ̇

−
[

P0

[

δU ′(U ′ +Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′ Ip
A

+ U ′yp − V ′xp)
]

−M0

x(ΦδU
′′ + U ′′δΦ)

]

− NzδW
′ +MyδU

′′ +MxδV
′′ +MωδΦ

′′ − 2MtδΦ

}

dzdt (21)

The expressions of inertia coefficients for thin-walled composite beams are given in Ref. [30].116

4. CONSTITUTIVE EQUATIONS117

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by118











σz

σsz











k

=







Q̄∗
11

Q̄∗
16

Q̄∗
16

Q̄∗
66







k 









ϵz

γsz











(22)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the119

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (ϵs = 0) assumption. More detailed120

explanation can be found in Ref. [31].121

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(8), (14) and (22)122



























































Nz

My

Mx

Mω

Mt



























































=































E11 E12 E13 E14 E15

E22 E23 E24 E25

E33 E34 E35

E44 E45

sym. E55

























































































ϵ◦z

κy

κx

κω

κsz



























































(23)

where Eij are stiffnesses of thin-walled composite beams and given in Ref. [30].123
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5. GOVERNING EQUATIONS OF MOTION124

The governing equations of motion of the present study can be derived by integrating the derivatives of the varied125

quantities by parts and collecting the coefficients of of δW, δU, δV and δΦ126

N ′
z = m0Ẅ (24a)

M ′′
y + P0

(

U ′′ +Φ′′yp
)

+M0

xΦ
′′ = m0Ü + (mc +m0yp)Φ̈ (24b)

M ′′
x + P0

(

V ′′ − Φ′′xp
)

= m0V̈ + (ms −m0xp)Φ̈ (24c)

M ′′
ω + 2M ′

t + P0

(

Φ′′ Ip
A

+ U ′′yp − V ′′xp
)

+M0

xU
′′ = (mc +m0yp)Ü

+ (ms −m0xp)V̈

+ (mp +m2 + 2mω)Φ̈ (24d)

The natural boundary conditions are of the form127

δW : Nz = P0 (25a)

δU : M ′
y =M ′

y
0

(25b)

δU ′ : My =M0

y (25c)

δV : M ′
x =M ′

x
0

(25d)

δV ′ : Mx =M0

x (25e)

δΦ : M ′
ω + 2Mt =M ′

ω
0

(25f)

δΦ′ : Mω =M0

ω (25g)

where P0,M
′
y
0
,M0

y ,M
′
x
0
,M0

x ,M
′
ω
0
and M0

ω are prescribed values.128

By substituting Eqs.(9) and (23) into Eq.(24), the explicit form of governing equations of motion can be expressed129
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with respect to the laminate stiffnesses Eij as130

E11W
′′ − E12U

′′′ − E13V
′′′ − E14Φ

′′′ + 2E15Φ
′′ = m0Ẅ (26a)

E12W
′′′ − E22U

iv − E23V
iv − E24Φ

iv + 2E25Φ
′′′

+P0(U
′′ +Φ′′yp) +M0

xΦ
′′ = m0Ü + (mc +m0yp)Φ̈ (26b)

E13W
′′′ − E23U

iv − E33V
iv − E34Φ

iv + 2E35Φ
′′′

+P0(V
′′ − Φ′′xp) = m0V̈ + (ms −m0xp)Φ̈ (26c)

E14W
′′′ + 2E15W

′′ − E24U
iv − 2E25U

′′′ − E34V
iv − 2E35V

′′′

−E44Φ
iv + 4E55Φ

′′ + P0(Φ
′′ Ip
A

+ U ′′yp − V ′′xp) +M0

xU
′′ = (mc +m0yp)Ü

+ (ms −m0xp)V̈

+ (mp +m2 + 2mω)Φ̈ (26d)

Eq.(26) is most general form for elastic stability of thin-walled composite beams with arbitrary lay-ups under131

constant axial loads and equal end moments and the dependent variables, W , U , V and Φ are fully coupled. If all132

the coupling effects are neglected and the cross section is symmetrical with respect to both x- and the y-axes,133

Eq.(26) can be simplified to the uncoupled differential equations as134

(EA)comW
′′ = ρAẄ (27a)

−(EIy)comU
iv + P0U

′′ +M0

xΦ
′′ = ρAÜ (27b)

−(EIx)comV
iv + P0V

′′ = ρAV̈ (27c)

−(EIω)comΦiv +
[

(GJ)com + P0

Ip
A

]

Φ′′ +M0

xU
′′ = ρIpΦ̈ (27d)

From above equations, (EA)com represents axial rigidity, (EIx)com and (EIy)com represent flexural rigidities with135

respect to x- and y-axis, (EIω)com represents warping rigidity, and (GJ)com represents torsional rigidity of thin-walled136

composite beams, respectively, written as137

(EA)com = E11 (28a)

(EIy)com = E22 (28b)

(EIx)com = E33 (28c)

(EIω)com = E44 (28d)

(GJ)com = 4E55 (28e)
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A. Flexural-torsional vibration under axial loads and equal end moments138

For simply supported beams with free warping, the overall displacements modes in bending and torsion are assumed139

as140

U(z, t) = U0 sin(
nπz

L
) sin(ωt) (29a)

V (z, t) = V0 sin(
nπz

L
) sin(ωt) (29b)

Φ(z, t) = Φ0 sin(
nπz

L
) sin(ωt) (29c)

Substituting Eq.(29) into Eq.(27), after integrations and some reductions, the resulting flexural and torsional equations141

of motion are obtained in compact form as142

ω2

xn

(1− P xn
)− ω2

xxn

= 0 (30a)

A
[

ω2

yn

(1− P yn
)− ω2

]

U0 −Mxn

√

AIpωyn
ωθnΦ0 = 0 (30b)

−Mxn

√

AIpωyn
ωθnU0 + Ip

[

ω2

θn
(1− P θn)− ω2

]

Φ0 = 0 (30c)

The flexural natural frequencies in the x-direction and bending moments are decoupled, while, the flexural natural143

frequencies in the y-direction, torsional natural frequencies and bending moments are coupled.144

ωxxn
= ωxn

√

1− P xn
(31a)

ωyan
=

√

√

√

√
ω2
yn

(1− P yn
) + ω2

θn
(1− P θn)

2
−

√

[ω2
yn

(1− P yn
)− ω2

θn
(1− P θn)

2

]2

+M
2

nω
2
yn

ω2

θn
(31b)

ωybn =

√

√

√

√
ω2
yn

(1− P yn
) + ω2

θn
(1− P θn)

2
+

√

[ω2
yn

(1− P yn
)− ω2

θn
(1− P θn)

2

]2

+M
2

nω
2
yn

ω2

θn
(31c)

in which P xn
, P yn

, P θn and Mxn
are nondimensional axial force and moment parameters145

P xn
=

P0

Pxn

(32a)

P yn
=

P0

Pyn

(32b)

P θn =
P0

Pθn

(32c)

Mxn
=

M0

x

Myθn

(32d)
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where Pxn
, Pyn

and Pθn are the flexural buckling loads in the x- and y-direction, and torsional buckling loads [4].146

Pxn
=

n2π2(EIx)com
l2

(33a)

Pyn
=

n2π2(EIy)com
l2

(33b)

Pθn =
A

Ip

[n2π2(EIω)com
l2

+ (GJ)com

]

(33c)

and Myθn is the buckling moments for pure bending [4].147

Myθn =

√

n2π2(EIy)com
l2

[n2π2(EIω)com
l2

+ (GJ)com

]

(34)

and ωxn
, ωyn

and ωθn are the flexural natural frequencies in the x- and y-direction, and torsional natural frequencies148

[5].149

ωxn
=

n2π2

l2

√

(EIx)com
ρA

(35a)

ωyn
=

n2π2

l2

√

(EIy)com
ρA

(35b)

ωθn =
nπ

l

√

1

ρIp

[n2π2

l2
(EIω)com + (GJ)com

]

(35c)

B. Flexural-torsional buckling under axial loads and equal end moments150

By omitting the inertia terms, Eq.(27) becomes151

(EA)comW
′′ = 0 (36a)

−(EIy)comU
iv + P0U

′′ +M0

xΦ
′′ = 0 (36b)

−(EIx)comV
iv + P0V

′′ = 0 (36c)

−(EIω)comΦiv +
[

(GJ)com + P0

Ip
A

]

Φ′′ +M0

xU
′′′ = 0 (36d)

It is well known that the flexural buckling loads in the x-direction are identified while the flexural buckling loads in152

the y-direction, torsional buckling loads and buckling moments are coupled. The orthotropy solution for the critical153

values of axial force P0 and bending moment M0

x [4]154

M0

x = rp

√

PθPy(1−
P0

Py

)(1−
P0

Pθ

) (37)

where Px, Py and Pθ are the critical flexural buckling load in the x- and y-direction, and the critical torsional buckling155

load, can be obtained from Eq.(33).156
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6. FINITE ELEMENT FORMULATION157

The present theory for thin-walled composite beams described in the previous section was implemented via a158

displacement based finite element method. The element has seven degrees of freedom at each node, three displacements159

W,U, V and three rotations U ′, V ′,Φ as well as one warping degree of freedom Φ′. The axial displacement W is160

interpolated using linear shape functions ψ̂j , whereas the lateral and vertical displacements U, V and axial rotation Φ161

are interpolated using Hermite-cubic shape functions ψj associated with node j and the nodal values, respectively.162

W =

2
∑

j=1

wjψ̂j (38a)

U =
4

∑

j=1

ujψj (38b)

V =

4
∑

j=1

vjψj (38c)

Φ =
4

∑

j=1

ϕjψj (38d)

Substituting these expressions into the weak statement in Eq.(21), the finite element model of a typical element163

can be expressed as the standard eigenvalue problem164

([K]− P0[G1]−M0

x [G2]− ω2[M ]){∆} = {0} (39)

where [K], [G1], [G2] and [M ] are the element stiffness matrix, the element geometric stiffness matrix due to axial165

force, bending moment and the element mass matrix, respectively. The explicit forms of them are given in Refs.166

[28-30].167

In Eq.(39), {∆} is the eigenvector of nodal displacements corresponding to an eigenvalue168

{∆} = {W U V Φ}T (40)

7. NUMERICAL EXAMPLES169

For verification purpose, the buckling behavior and free vibration of a cantilever symmetrically laminated mono-170

symmetric I-beam with length l = 1m under axial load at the centroid is performed. Following dimensions for the171

I-beam are used: the height, top and bottom flange widths are 50mm, 30mm and 50mm, respectively. The flanges and172

web are made of sixteen layers with each layer 0.13mm in thickness. All computations are carried out for the glass-173

epoxy materials with the following material properties: E1 = 53.78GPa , E2 = 17.93GPa , G12 = 8.96GPa , ν12 =174
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0.25, ρ = 1968.9kg/m3. The critical buckling loads are evaluated and compared with numerical results of Kim and Shin175

[26], which is based on dynamic stiffness formulation and ABAQUS solutions in Table 1. Next, the flexural-torsional176

coupled vibration analysis of axially loaded cantilever beam is analyzed. The applied magnitude of axial force is given177

in Ref. [26], which corresponds to one half of buckling load of beam. The lowest four coupled natural frequencies178

with and without the axial force are presented in Table 2. Load-frequency interaction curves for fiber angles 0◦, 30◦179

and 60◦ is exhibited in Fig. 2. It reveals that the tension force has a stiffening effect while the compressive force has180

a softening effect on the natural frequencies. The accuracy of the prediction from present model with Kim181

and Shin [26] can be seen in Tables 1 and 2, except for some natural frequencies in higher modes.182

However, maximum difference is small, nearly 2.5% and within the acceptable range.183

To illustrate the accuracy of this study further, a simply supported composite doubly symmetric I-beam with length184

l = 5.0m under an eccentric load is analyzed. Lay-ups and material properties are the same with previous example185

except the geometry of I-section. Both of flanges width b and web height h are 50mm. The critical buckling loads of186

this beam under an axial compressive force acting at positions of e = 0, h/4 and h/2 from the centroid are calculated.187

The comparison of the results between the proposed finite element analysis and analytical approach by Kim et al. [32]188

is given in Table 3. The present solution again indicates good agreement with the analytical solution and ABAQUS189

results for all lamination schemes considered. Next, besides the eccentric load, this simply supported beam under190

an additional uniform bending moment simultaneously is performed to study effect of eccentricity on the buckling191

moments. The axial-moment interaction curves for various fiber angles are plotted in Fig. 3. The critical buckling192

moments for pure bending occur at about M=42.28Nm, 62.47Nm and 65.13Nm for fiber angles 60◦, 30◦ and 0◦,193

respectively. It is clear that with the presence of the axial compressive force, the eccentricity decreases both buckling194

loads and moments. The relative difference of these results due to the eccentricity is significant and maximum at195

unidirectional fiber angle (Fig. 3 and Table 3).196

In order to investigate the effect of axial force, bending moment, fiber orientation on the buckling moments, natural197

frequencies and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves, a simply198

supported composite I-beam with length l = 8m under axial force and uniform bending moment is considered. The199

geometry and stacking sequences of this simply supported beam are shown in Fig. 4, and the following engineering200

constants are used201

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (41)
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For convenience, the following nondimensional axial force, bending moment and natural frequency are used202

P =
P0l

2

b3
3
tE2

(42a)

M =
M0

x l

b3
3
tE2

(42b)

ω =
ωl2

b3

√

ρ

E2

(42c)

Stacking sequences of the flanges and web are angle-ply laminates [θ/−θ], (Fig. 4a). All the coupling stiffnesses203

are zero, but E15, E35 do not vanish due to unsymmetric lay-up of the flanges and web. Effect of axial force on the204

critical buckling moments (M cr) is shown in Table 4. The critical buckling loads and the critical buckling moments205

without axial force agree completely with those of previous papers [28,29]. In Table 5, with the presence of bending206

moment, the lowest four natural frequencies with and without the effect of axial force by the finite element analysis207

are compared to those of the orthotropy solution, which neglects the coupling effects of E15, E35 from Eqs.(31a)-(31c).208

It can be seen that the change in the critical buckling moments and natural frequencies due to axial force is noticeable209

for all fiber angles. The results diminish when the axial force changes from tensile to compressive, as expected. This210

demonstrates again the fact that a tensile force stiffens the beam and a compressive force softens the beam. For211

unidirectional fiber direction, the results by the finite element analysis exactly correspond to those by the orthotropy212

solution (Tables 4 and 5). At this fiber angle, the lowest four natural frequencies are the first, second and third213

flexural-torsional coupled modes and the first flexural mode in x-direction, respectively. As fiber angle changes, this214

order changes a bit. It can be explained by the typical normal mode shapes corresponding to the lowest four215

natural frequencies with fiber angle θ = 30◦ for the case (P = 0.5P cr, M = 0.5M cr) in Fig. 5. Relative measures of216

flexural displacements, torsional rotation show that when the beam is vibrating at the natural frequency belonging217

to the first and second mode exhibits doubly coupled vibrations (flexural mode in y-direction and torsional mode),218

whereas, third and fourth mode display triply coupled vibrations (flexural mode in the x-, y-direction and torsional219

mode). Due to the small coupling stiffnesses E15, E35, the results by the finite element analysis and orthotropy220

solution show slight discrepancy in the range θ ∈ [15◦ − 60◦]. However, as fiber angle increases, the coupling effects221

from material anisotropy become negligible. Therefore, the orthotropy solution and the finite element analysis are222

nearly identical. In order to investigate the effects of bending moment on the critical buckling loads and natural223

frequencies, the axial-moment and moment-frequency interaction curves for the fiber angles θ = 30◦ and 60◦ of two224

solutions are plotted in Figs. 6-8. All of the interaction curves are symmetric with respect to the M = 0 axis. The225

moment at buckling increase from zero as the axial compressive force decreases from the buckling226
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load to the buckling moment when P = 0, as shown in Fig. 6. Further increases take place after axial227

force becomes negative (tensile). Characteristic of axial-moment and moment-frequency interaction curves is228

that the value of the bending moment for which the axial force or natural frequency vanishes constitutes the buckling229

moment. For example, for θ = 30◦ (Fig. 7), when the beam is under an axial compressive force (P = 0.5P cr), the230

first buckling moment occurs at M = 2.36× 10−2, which agrees completely with value from Table 4. As a result, the231

lowest branch is disappeared when M is slightly over this value. As the bending moment increases, two interaction232

curves (ω2 −M2) and (ω3 −M3) intersect at M = 5.37× 10−2, thus, after this value, vibration mode 2 and 3 change233

each other. The second branch will also be disappeared when M is slightly over 8.44× 10−2, which is corresponding234

to the second buckling moment. Fig. 9 shows a comprehensive three dimensional axial-moment-frequency interaction235

diagram. Two groups of curves are observed. The small group is for θ = 60◦ and the larger group is for θ = 45◦. It236

is clear that moment-frequency interaction curves become smaller as the axial compressive force increases. Finally,237

these curves vanish at about P = 0.25 and 0.45 for fiber angle θ = 60◦ and 45◦, respectively, which implies that at238

these loads, the critical bucklings occur as a degenerated case of natural vibration at zero frequency and bending239

moment at zero value.240

The next example is the same as before except that in this case, the bottom flange is angle-ply laminates [θ/−θ],241

while the top flange and web laminates are unidirectional, (Fig. 4b). Major effects of axial force and bending moment242

on the critical buckling moments and natural frequencies are again seen Tables 6 and 7. As the fiber angle changes, the243

orthotropy solution and the finite element analysis solution show discrepancy indicating the coupling effects become244

significant. That is, the orthotropy solution is no longer valid for unsymmetrically laminated beams, and triply245

flexural-torsional coupled vibration and buckling should be considered even for bisymmetric thin-walled composite246

beams. The effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ is plotted in Fig.247

10. When the axial force is compressive, this beam has two different critical buckling moments. The higher one of248

these is positive and occurs when the moment causes compression in the top flange, while the lower one is negative,249

corresponding to a reversal in the sense of the moment which causes tension in the top flange. On the other hand,250

when the axial force is tensile, the higher buckling moment is negative and lower one is positive. Beside, it tends to251

stabilize the beam, and the critical buckling moments are increased, as expected. The lowest three moment-frequency252

interaction curves with the fiber angle θ = 60◦ for two cases (P = −0.5P cr) and (P = 0.5P cr) are displayed in Figs.253

11 and 12. With the increase of bending moment, after the first and third natural frequencies increase and reach254

local maximum values, they decrease. The increase and decrease become steeper when bending moments are close255
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to buckling moments. It is from Figs. 10-12 that highlights the effects of coupling on the vibration and buckling of256

thin-walled composite beam under constant axial loads and equal end moments. All of the symmetric axial-moment257

and moment-frequency interaction curves are no longer visible. This response is never seen in bisymmetric thin-walled258

isotropic beams because the coupling terms are not present. It is similar to the behavior of monosymmetric beams,259

which implies that due to coupling effects when thin-walled composite beams under axial force and bending moment,260

for each value of axial force or natural frequency always corresponding to two unequal values of buckling moment.261

Figs. 10-12 also explain the duality among buckling moment, critical buckling load and natural frequency.262

8. CONCLUDING REMARKS263

Vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under axial loads and end264

moments is presented. This model is capable of predicting accurately the buckling moments, natural frequencies265

and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves. To formulate the266

problem, a one-dimensional displacement-based finite element method with seven degrees of freedom per node is267

developed. All of the possible vibration mode shapes including the flexural mode in the x- and y-direction and the268

torsional mode, and fully flexural-torsional coupled mode are included in the analysis. The present model is found to269

be appropriate and efficient in analyzing vibration and buckling problem of thin-walled composite I-beams under270

constant axial loads and equal end moments.271
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CAPTIONS OF TABLES333

Table 1: Critical bucking loads (N) of a cantilever mono-symmetric composite I-beam with symmetric angle-ply334

laminates [±θ]4s in the flanges and web.335

Table 2: Natural frequencies (Hz) of a cantilever mono-symmetric composite I-beam with symmetric angle-ply336

laminates [±θ]4s in the flanges and web under constant axial forces at the centroid (( ): natural frequency with an337

axial compressive force, [ ]: natural frequency with an axial tensile force).338

Table 3: Effect of eccentricity on critical bucking loads (N) of a simply supported composite I-beam with symmetric339

angle-ply laminates [±θ]4s in the flanges and web.340

Table 4: Effect of axial force on the critical buckling moments M cr(×10−2) of a simply supported composite beam341

with respect to the fiber angle change in the flanges and web.342

Table 5: Effect of axial force and bending moment on the first four natural frequencies of a simply supported343

composite beam with respect to the fiber angle change in the flanges and web.344

Table 6: Effect of axial force on the critical buckling moments M cr(×10−2) of a simply supported composite beam345

with respect to the fiber angle change in the bottom flange.346

Table 7: Effect of axial force and bending moment on the first four natural frequencies of a simply supported347

composite beam with respect to the fiber angle change in the bottom flange.348
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CAPTIONS OF FIGURES349

Figure 1: Definition of coordinates in thin-walled open-section composite beams.350

Figure 2: Effect of axial force on the fundamental natural frequency with the fiber angles 0◦, 30◦ and 60◦ in the351

flanges and web of a cantilever mono-symmetric composite I-beam.352

Figure 3: Effect of eccentricity and axial compressive force on the critical buckling moments with the fiber angles353

0◦, 30◦ and 60◦ in the flanges and web of a simply supported composite beam.354

Figure 4: Geometry and stacking sequences of a simply supported I-beam under axial load and uniform bending.355

Figure 5: The first four normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in the356

flanges and web of a simply supported composite beam under an axial compressive force (P = 0.5P cr) and bending357

moment (M = 0.5M cr).358

Figure 6: Effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ in the flanges and359

web of a simply supported composite beam.360

Figure 7: Effect of bending moment on the first three natural frequencies with the fiber angle 30◦ in the bottom361

flange of a simply supported composite beam under an axial compressive force (P = 0.5P cr).362

Figure 8: Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom363

flange of a simply supported composite beam under an axial compressive force (P = 0.5P cr).364

Figure 9: Three dimensional interaction diagram of the fundamental natural frequency, bending moment and axial365

compressive force with the fiber angle 45◦ and 60◦ in the flanges and web of a simply supported composite beam.366

Figure 10: Effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ in the bottom367

flange of a simply supported composite beam.368

Figure 11: Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom369

flange of a simply supported composite beam under an axial tensile force (P = −0.5P cr).370

Figure 12: Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom371

flange of a simply supported composite beam under an axial compressive force (P = 0.5P cr).372
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TABLE 1 Critical bucking loads (N) of a cantilever mono-symmetric composite I-beam with symmetric angle-ply laminates

[±θ]4s in the flanges and web.

Lay-ups Kim and Shin [26] Present

ABAQUS No shear

[0]16 2969.7 2998.1 2998.2

[15/− 15]4s 2790.9 2813.8 2806.3

[30/− 30]4s 2190.6 2201.1 2186.8

[45/− 45]4s 1558.9 1562.4 1548.0

[60/− 60]4s 1239.4 1241.5 1229.6

[75/− 75]4s 1132.2 1134.5 1128.6
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TABLE 2 Natural frequencies (Hz) of a cantilever mono-symmetric composite I-beam with symmetric angle-ply laminates

[±θ]4s in the flanges and web under constant axial forces at the centroid (( ): natural frequency with an axial compressive

force, [ ]: natural frequency with an axial tensile force).

Mode Stacking sequences and axial force

[0]16 [15/− 15]4s [30/− 30]4s [45/− 45]4s [60/− 60]4s [75/− 75]4s

P=1499.05 N P=1406.90 N P=1100.55 N P=781.20 N P=620.75 N P=567.25 N

Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present

1 (19.087) (19.090) (18.505) (18.460) (16.401) (16.295) (13.841) (13.710) (12.342) (12.220) (11.791) (11.729)

26.295 26.298 25.508 25.478 22.641 22.561 19.130 19.024 17.063 16.963 16.294 16.244

[31.498] [31.501] [30.568] [30.542] [27.162] [27.087] [22.970] [22.866] [20.492] [20.393] [19.561] [19.512]

2 (43.267) (43.267 (44.524) (44.388) (46.335) (45.155) (40.135) (40.178) (35.692) (35.730) (34.273) (34.310)

46.472 46.470 47.346 47.222 48.325 47.210 42.243 42.287 37.575 37.615 36.066 36.104

[49.414] [49.412] [49.969] [49.853] [50.213] [49.154] [44.224] [44.269] [39.345] [39.385] [37.751] [37.790]

3 (59.242) (59.304) (56.205) (56.265) (48.304) (48.355) (45.879) (42.790) (42.648) (39.156) (37.990) (36.481)

61.988 62.052 58.920 58.982 50.772 50.825 47.267 44.287 43.831 40.451 39.210 37.756

[64.586] [64.653] [61.484] [61.547] [53.096] [53.150] [48.593] [45.715] [44.963] [41.688] [40.374] [38.973]

4 (129.73) (129.809 (127.28) (127.084) (118.02) (116.806) (104.11) (101.808) (93.778) (91.419) (88.027) (86.926)

138.17 138.251 135.30 135.126 124.68 123.563 109.44 107.273 98.472 96.250 92.605 91.573

[146.02] [146.105] [142.77] [142.619] [130.94] [129.897] [114.47] [112.423] [102.92] [100.808] [96.927] [95.954]
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TABLE 3 Effect of eccentricity on critical bucking loads (N) of a simply supported composite I-beam with symmetric angle-ply

laminates [±θ]4s in the flanges and web.

Lay-ups e = 0 e = h/4 e = h/2

Kim et al.[32] Present

ABAQUS No shear

[0]16 920.8 890.3 818.6

[15/− 15]4s 832.0 809.2 810.7 810.5 757.5

[30/− 30]4s 617.8 608.1 608.7 608.0 582.2

[45/− 45]4s 427.6 423.5 423.7 422.9 410.0

[60/− 60]4s 338.4 335.5 335.6 334.9 325.3

[75/− 75]4s 311.7 308.6 308.6 308.3 298.8
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TABLE 4 Effect of axial force on the critical buckling moments Mcr(×10−2) of a simply supported composite beam with

respect to the fiber angle change in the flanges and web.

Fiber Buckling P = 0.5P cr (compression) P=0 (no axial force) P = −0.5P cr (tension)

angle loads (P cr) Present Orthotropy Present Orthotropy Present Orthotropy

0 5.153 4.451 4.451 7.370 7.370 10.175 10.175

15 4.026 4.348 4.851 6.842 7.486 9.151 9.875

30 1.404 2.358 2.733 3.496 4.004 4.472 5.068

45 0.454 1.105 1.192 1.599 1.720 2.003 2.147

60 0.255 0.701 0.713 1.009 1.026 1.258 1.278

75 0.213 0.564 0.565 0.813 0.814 1.014 1.016

90 0.206 0.528 0.528 0.763 0.763 0.953 0.953

TABLE 5 Effect of axial force and bending moment on the first four natural frequencies of a simply supported composite beam

with respect to the fiber angle change in the flanges and web.

Fiber Axial force Present Orthotropy

angle & moment ω1 ω2 ω3 ω4 ωya1
ωyb1 ωya2

ωxx1

0 2.914 6.204 18.657 19.830 2.914 6.204 18.657 19.830

30 P = 0.5P cr 1.591 6.010 9.655 10.225 1.667 6.936 9.732 10.352

60 M = 0.5Mcr 0.684 4.128 4.158 4.408 0.688 4.231 4.132 4.415

90 0.614 3.493 3.710 3.966 0.614 3.493 3.710 3.966

0 3.980 7.522 19.654 20.148 3.980 7.522 19.654 20.148

30 P = 0 2.224 6.377 10.069 10.521 2.335 7.237 10.290 10.518

60 M = 0.5Mcr 0.963 4.254 4.345 4.486 0.969 4.324 4.357 4.486

90 0.864 3.584 3.911 4.030 0.864 3.584 3.911 4.030

0 4.769 8.666 20.461 20.518 4.769 8.666 20.518 20.461

30 P = −0.5P cr 2.694 6.732 10.353 10.899 2.832 7.532 10.802 10.681

60 M = 0.5Mcr 1.175 4.348 4.515 4.595 1.182 4.415 4.568 4.555

90 1.053 3.675 4.092 4.098 1.053 3.675 4.098 4.092
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TABLE 6 Effect of axial force on the critical buckling moments Mcr(×10−2) of a simply supported composite beam with

respect to the fiber angle change in the bottom flange.

Fiber Buckling P = 0.5P cr (compression) P=0 (no axial force) P = −0.5P cr (tension)

angle loads (P cr) Present Orthotropy Present Orthotropy Present Orthotropy

0 5.153 4.451 4.451 7.370 7.370 10.175 10.175

15 4.565 4.042 4.366 6.883 7.054 9.233 9.604

30 2.771 2.498 3.201 4.895 5.007 6.071 6.789

45 1.631 1.819 2.388 3.597 3.614 4.265 4.831

60 1.259 1.621 2.087 3.117 3.119 3.655 4.121

75 1.140 1.553 1.982 2.948 2.948 3.448 3.877

90 1.112 1.536 1.955 2.905 2.905 3.397 3.815

TABLE 7 Effect of axial force and bending moment on the first four natural frequencies of a simply supported composite beam

with respect to the fiber angle change in the bottom flange.

Fiber Axial force Present Orthotropy

angle & moment ω1 ω2 ω3 ω4 ωya1
ωyb1 ωya2

ωxx1

0 2.914 6.204 18.657 19.830 2.914 6.204 18.657 19.830

30 P = 0.5P cr 3.049 4.108 12.652 16.205 2.629 4.355 13.595 16.240

60 M = 0.5Mcr 2.050 3.655 5.990 12.317 1.836 3.353 6.019 14.596

90 1.895 3.674 5.450 11.146 1.695 3.360 5.453 14.523

0 3.980 7.522 19.654 20.148 3.980 7.522 19.654 20.148

30 P = 0 3.672 4.772 14.120 16.429 3.102 5.471 14.034 16.449

60 M = 0.5Mcr 2.650 3.712 7.014 13.492 2.148 4.027 6.850 14.703

90 2.448 3.721 6.422 12.270 2.021 3.945 6.268 14.617

0 4.769 8.666 20.461 20.518 4.769 8.666 20.518 20.461

30 P = −0.5P cr 4.165 5.551 15.214 16.677 3.781 6.240 14.697 16.656

60 M = 0.5Mcr 3.068 4.066 7.855 14.513 2.639 4.481 7.647 14.808

90 2.857 4.022 7.226 13.254 2.487 4.353 7.040 14.710
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FIG. 1 Definition of coordinates in thin-walled open-section composite beams.
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FIG. 2 Effect of axial force on the fundamental natural frequency with the fiber angles 0◦, 30◦ and 60◦ in the flanges and web

of a cantilever mono-symmetric composite I-beam.
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FIG. 3 Effect of eccentricity and axial compressive force on the critical buckling moments with the fiber angles 0◦, 30◦ and 60◦

in the flanges and web of a simply supported composite beam.
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FIG. 4 Geometry and stacking sequences of a simply supported I-beam under axial load and uniform bending.
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FIG. 5 The first four normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in the flanges and

web of a simply supported composite beam under an axial compressive force (P = 0.5P cr) and bending moment (M = 0.5Mcr).
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FIG. 6 Effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ in the flanges and web of a

simply supported composite beam.
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FIG. 7 Effect of bending moment on the first three natural frequencies with the fiber angle 30◦ in the bottom flange of a simply

supported composite beam under an axial compressive force (P = 0.5P cr).
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FIG. 8 Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom flange of a simply

supported composite beam under an axial compressive force (P = 0.5P cr).
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FIG. 10 Effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ in the bottom flange of a

simply supported composite beam.
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FIG. 11 Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom flange of a

simply supported composite beam under an axial tensile force (P = −0.5P cr).



37

0

2

4

6

8

-0.075 -0.05 -0.025 0 0.025 0.05 0.075

ω

M

ω1 −M1

r

r

r

r

r
r
r
r
r
r
r
r
rr
rrrrr

r
r

r

r

r

r

r

ω2 −M2

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
ω3 −M3

FIG. 12 Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the bottom flange of a

simply supported composite beam under an axial compressive force (P = 0.5P cr).


