902 research outputs found

    Path Integral Marginalization for Cosmology: Scale Dependent Galaxy Bias & Intrinsic Alignments

    Full text link
    We present a path-integral likelihood formalism that extends parameterized likelihood analyses to include continuous functions. The method finds the maximum likelihood point in function-space, and marginalizes over all possible functions, under the assumption of a Gaussian-distributed function-space. We apply our method to the problem of removing unknown systematic functions in two topical problems for dark energy research : scale-dependent galaxy bias in redshift surveys; and galaxy intrinsic alignments in cosmic shear surveys. We find that scale-dependent galaxy bias will degrade information on cosmological parameters unless the fractional variance in the bias function is known to 10%. Measuring and removing intrinsic alignments from cosmic shear surveys with a flat-prior can reduce the dark energy Figure-of-Merit by 20%, however provided that the scale and redshift-dependence is known to better than 10% with a Gaussian-prior, the dark energy Figure-of-Merit can be enhanced by a factor of two with no extra assumptions.Comment: 11 pages, 4 figures, submitted to MNRA

    Systematic effects on dark energy from 3D weak shear

    Full text link
    We present an investigation into the potential effect of systematics inherent in multi-band wide field surveys on the dark energy equation of state determination for two 3D weak lensing methods. The weak lensing methods are a geometric shear-ratio method and 3D cosmic shear. The analysis here uses an extension of the Fisher matrix framework to jointly include photometric redshift systematics, shear distortion systematics and intrinsic alignments. We present results for DUNE and Pan-STARRS surveys. We show that assuming systematic parameters are fixed, but possibly biased, results in potentially large biases in dark energy parameters. We quantify any potential bias by defining a Bias Figure of Merit. We also show the effect on the dark energy Figure of Merit of marginalising over each systematic parameter individually. We find that the largest effect on the Figure of Merit comes from uncertainty in the photometric redshift systematic parameters. These can reduce the Figure of Merit by up to a factor of 2 to 4 in both 3D weak lensing methods, if no informative prior on the systematic parameters is applied. Shear distortion systematics have a smaller overall effect. Intrinsic alignment effects can reduce the Figure of Merit by up to a further factor of 2. This, however, is a worst case scenario. By including prior information on systematic parameters the Figure of Merit can be recovered to a large extent. We conclude that, as a rule of thumb, given a realistic current understanding of intrinsic alignments and photometric redshifts, then including all three primary systematic effects reduces the Figure of Merit by at most a factor of 2, but that in reality this factor should be much less. [abridged]Comment: 20 pages, 11 figures, submitted to MNRA

    The vacuum energy with non-ideal boundary conditions via an approximate functional equation

    Full text link
    We discuss the vacuum energy of a quantized scalar field in the presence of classical surfaces, defining bounded domains Ω⊂Rd\Omega \subset {\mathbb{R}}^{d}, where the field satisfies ideal or non-ideal boundary conditions. For the electromagnetic case, this situation describes the conductivity correction to the zero-point energy. Using an analytic regularization procedure, we obtain the vacuum energy for a massless scalar field at zero temperature in the presence of a slab geometry Ω=Rd−1×[0,L]\Omega=\mathbb R^{d-1}\times[0, L] with Dirichlet boundary conditions. To discuss the case of non-ideal boundary conditions, we employ an asymptotic expansion, based on an approximate functional equation for the Riemann zeta-function, where finite sums outside their original domain of convergence are defined. Finally, to obtain the Casimir energy for a massless scalar field in the presence of a rectangular box, with lengths L1L_{1} and L2L_{2}, i.e., Ω=[0,L1]×[0,L2]\Omega=[0,L_{1}]\times[0,L_{2}] with non-ideal boundary conditions, we employ an approximate functional equation of the Epstein zeta-function.Comment: 10 page

    Cosmic shear analysis of archival HST/ACS data: I. Comparison of early ACS pure parallel data to the HST/GEMS Survey

    Get PDF
    This is the first paper of a series describing our measurement of weak lensing by large-scale structure using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). We describe our new correction scheme for the time-dependent ACS PSF based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to < 2*10^{-6} for galaxy fields containing at least 10 stars. We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin^{-2} with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation sigma_{8,CDFS}=0.52^{+0.11}_{-0.15} (stat) +/- 0.07 (sys) (68% confidence assuming Gaussian cosmic variance) at fixed Omega_m=0.3 for a LambdaCDM cosmology. We interpret this exceptionally low estimate to be due to a local under-density of the foreground structures in the CDFS.Comment: Version accepted for publication in Astronomy & Astrophysics with 28 pages, 25 figures. A version with full resolution figures can be downloaded from http://www.astro.uni-bonn.de/~schrabba/papers/cosmic_shear_acs1_v2.pd

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    Spatial matter density mapping of the STAGES Abell A901/2 supercluster field with 3D lensing

    Get PDF
    We present weak lensing data from the Hubble Space Telescope(HST)/Space Telescope A901/902 Galaxy Evolution Survey (STAGES) survey to study the three-dimensional spatial distribution of matter and galaxies in the Abell 901/902 supercluster complex. Our method improves over the existing 3D lensing mapping techniques by calibrating and removing redshift bias and accounting for the effects of the radial elongation of 3D structures. We also include the first detailed noise analysis of a 3D lensing map, showing that even with deep HST-quality data, only the most massive structures, for example M200≳ 1015M⊙h-1 at z∌ 0.8, can be resolved in 3D with any reasonable redshift accuracy (Δz≈ 0.15). We compare the lensing map to the stellar mass distribution and find luminous counterparts for all mass peaks detected with a peak significance &gt;3σ. We see structures in and behind the z= 0.165 foreground supercluster, finding structure directly behind the A901b cluster at z∌ 0.6 and also behind the south-west (SW) group at z∌ 0.7. This 3D structure viewed in projection has no significant impact on recent mass estimates of A901b or the SW group components SWa and SWb. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS

    Mapping the 3-D dark matter with weak lensing in COMBO-17

    Full text link
    We present a 3-dimensional lensing analysis of the z=0.16 supercluster A901/2, resulting in a 3-D map of the dark matter distribution within a 3 X 10^{5} [Mpc]^3 volume from the COMBO-17 survey. We perform a chi^2-fit of isothermal spheres to the tangential shear pattern around each cluster as a function of redshift to estimate the 3-D positions and masses of the main clusters in the supercluster from lensing alone. We then present the first 3-D map of the dark matter gravitational potential field, Phi, using the Kaiser-Squires (1993) and Taylor (2001) inversion methods. These maps clearly show the potential wells of the main supercluster components, including a new cluster behind A902, and demonstrates the applicability of 3-D dark matter mapping and projection free-mass-selected cluster finding to current data. Finally, we develop the halo model of dark matter and galaxy clustering and compare this with the auto-and cross-correlation functions of the 3-D gravitational potential, galaxy number densities and galaxy luminosity densities measured in the A901/2 field. We find significant anti-correlations between the gravitational potential field and the galaxy number density and luminosities, as expected due to baryonic infall into dark matter concentrations. We find good agreement with the halo model for the number densities and luminosity correlation functions.Comment: Submitted to MNRAS; 21 pages, 18 figure

    Ultra-deep catalog of X-ray groups in the Extended Chandra Deep Field South

    Get PDF
    Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of 2×10−162\times10^{-16} ergs s−1^{-1} cm−2^{-2}. We present the search for the extended emission on spatial scales of 32â€Čâ€Č^{\prime\prime} in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/dΩ\Omega test reveals that a redshift range of 0.2<z<0.50.2<z<0.5 in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible departures to be within 30% in mass. Abridged.Comment: 20 pages, 21 figures, 3 tables, to match the journal versio

    A Comparative Analysis of Rare Sternalis Muscles: A Case Report

    Get PDF
    The sternalis muscle is a rare variant in the anterior chest wall located anterior to the vertical muscle. It was found in two cadavers during routine cadaveric dissection of 20 bodies. This finding provided an opportunity to perform a comparative anatomical analysis between a unilateral sternalis muscle on a female versus a bilateral sternalis muscle on a male. Having a better understanding of the anatomical variants can be extremely useful, precisely to avoid misdiagnosing tumors and to assist in landmark identification during surgeries
    • 

    corecore