122 research outputs found

    The mean field infinite range p=3 spin glass: equilibrium landscape and correlation time scales

    Full text link
    We investigate numerically the dynamical behavior of the mean field 3-spin spin glass model: we study equilibrium dynamics, and compute equilibrium time scales as a function of the system size V. We find that for increasing volumes the time scales τ\tau increase like lnâĄÏ„âˆV\ln \tau \propto V. We also present an accurate study of the equilibrium static properties of the system.Comment: 6 pages, 9 figure

    Long-ranged order and flow alignment in sheared p-atic liquid crystals

    Get PDF
    We formulate a hydrodynamic theory of p-atic liquid crystals, namely, two-dimensional anisotropic fluids endowed with generic p-fold rotational symmetry. Our approach, based on an order parameter tensor that directly embodies the discrete rotational symmetry of p-atic phases, allows us to unveil several unknown aspects of flowing p-atics, that previous theories, characterized by O(2) rotational symmetry, could not account for. This includes the onset of long-ranged orientational order in the presence of a simple shear flow of arbitrary shear rate, as opposed to the standard quasi-long-ranged order of two-dimensional liquid crystals, and the possibility of flow alignment at large shear rates.Theoretical Physic

    Hydrodynamic theory of p-atic liquid crystals

    Get PDF
    We formulate a comprehensive hydrodynamic theory of two-dimensional liquid crystals with generic p-fold rotational symmetry, also known as p-atics, of which nematics (p = 2) and hexatics (p = 6) are the two best known examples. Previous hydrodynamic theories of p-atics are characterized by continuous O(2) rotational symmetry, which is higher than the discrete rotational symmetry of p-atic phases. By contrast, here we demonstrate that the discrete rotational symmetry allows the inclusion of additional terms in the hydrodynamic equations, which, in turn, lead to novel phenomena, such as the possibility of flow alignment at high shear rates, even for p > 2. Furthermore, we show that any finite imposed shear will induce long-ranged orientational order in any p-atic liquid crystal, in contrast to the quasi-long-ranged order that occurs in the absence of shear. The induced order parameter scales like a nonuniversal power of the applied shear rate at small shear rates.Theoretical Physic

    Dancing disclinations in confined active nematics

    Get PDF
    The spontaneous emergence of collective flows is a generic property of active fluids and often leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their orientation field. However, the ability to achieve structured flows and ordered disclinations is of particular importance in the design and control of active systems. By confining an active nematic fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they continually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We anticipate that this biomimetic ability to self-assemble organised topological disclinations and dynamically structured flow fields in engineered geometries will pave the road towards establishing new active topological microfluidic devices

    Exploring the long-term associations between adolescents’ music training and academic achievement

    Get PDF
    There is a positive relationship between learning music and academic achievement, although doubts remain regarding the mechanisms underlying this association. This research analyses the academic performance of music and non-music students from seventh to ninth grade. The study controls for socioeconomic status, intelligence, motivation and prior academic achievement. Data were collected from 110 adolescents at two time points, once when the students were between 11 and 14 years old in the seventh grade, and again 3 years later. Our results show that music students perform better academically than non-music students in the seventh grade (Cohen’s d = 0.88) and in the ninth grade (Cohen’s d = 1.05). This difference is particularly evident in their scores in Portuguese language and natural science; the difference is somewhat weaker in history and geography scores, and is least pronounced in mathematics and English scores (η2p from .09 to .21). A longitudinal analysis also revealed better academic performance by music students after controlling for prior academic achievement (η2p = .07). Furthermore, controlling for intelligence, socioeconomic status and motivation did not eliminate the positive association between music learning from the seventh to the ninth grade and students’ academic achievement (η2p = .06). During the period, music students maintained better and more consistent academic standing. We conclude that, after controlling for intelligence, socioeconomic status and motivation, music training is positively associated with academic achievement.This research was funded by the Portuguese National Funding Agency for Science, Research and Technology (FCT - Fundacao para a Ciencia e a Tecnologia)

    Periodic boundary conditions on the pseudosphere

    Full text link
    We provide a framework to build periodic boundary conditions on the pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian space of constant negative curvature. Starting from the common case of periodic boundary conditions in the Euclidean plane, we introduce all the needed mathematical notions and sketch a classification of periodic boundary conditions on the hyperbolic plane. We stress the possible applications in statistical mechanics for studying the bulk behavior of physical systems and we illustrate how to implement such periodic boundary conditions in two examples, the dynamics of particles on the pseudosphere and the study of classical spins on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.

    Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves

    Get PDF
    Context. Both multi-messenger astronomy and new high-throughput wide-field surveys require flexible tools for the selection and analysis of astrophysical transients. Aims. Here we introduce the alert management, photometry, and evaluation of light curves (AMPEL) system, an analysis framework designed for high-throughput surveys and suited for streamed data. AMPEL combines the functionality of an alert broker with a generic framework capable of hosting user-contributed code; it encourages provenance and keeps track of the varying information states that a transient displays. The latter concept includes information gathered over time and data policies such as access or calibration levels. Methods. We describe a novel ongoing real-time multi-messenger analysis using AMPEL to combine IceCube neutrino data with the alert streams of the Zwicky Transient Facility (ZTF). We also reprocess the first four months of ZTF public alerts, and compare the yields of more than 200 different transient selection functions to quantify efficiencies for selecting Type Ia supernovae that were reported to the Transient Name Server (TNS). Results. We highlight three channels suitable for (1) the collection of a complete sample of extragalactic transients, (2) immediate follow-up of nearby transients, and (3) follow-up campaigns targeting young, extragalactic transients. We confirm ZTF completeness in that all TNS supernovae positioned on active CCD regions were detected. Conclusions. AMPEL can assist in filtering transients in real time, running alert reaction simulations, the reprocessing of full datasets as well as in the final scientific analysis of transient data. This is made possible by a novel way of capturing transient information through sequences of evolving states, and interfaces that allow new code to be natively applied to a full stream of alerts. This text also introduces a method by which users can design their own channels for inclusion in the AMPEL live instance that parses the ZTF stream and the real-time submission of high-quality extragalactic supernova candidates to the TNS
    • 

    corecore