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We formulate a comprehensive hydrodynamic theory of two-dimensional liquid crystals with generic p-fold
rotational symmetry, also known as p-atics, of which nematics (p = 2) and hexatics (p = 6) are the two best
known examples. Previous hydrodynamic theories of p-atics are characterized by continuous O(2) rotational
symmetry, which is higher than the discrete rotational symmetry of p-atic phases. By contrast, here we
demonstrate that the discrete rotational symmetry allows the inclusion of additional terms in the hydrodynamic
equations, which, in turn, lead to novel phenomena, such as the possibility of flow alignment at high shear rates,
even for p > 2. Furthermore, we show that any finite imposed shear will induce long-ranged orientational order
in any p-atic liquid crystal, in contrast to the quasi-long-ranged order that occurs in the absence of shear. The
induced order parameter scales like a nonuniversal power of the applied shear rate at small shear rates.
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I. INTRODUCTION

The existence of the hexatic phase, i.e., a liquid-crystalline
phase of two-dimensional matter intermediate between crys-
talline solid and isotropic liquid, was predicted by Halperin
and Nelson in the late 1970s [1,2], building upon Kosterlitz’
and Thouless’ groundbreaking discovery of defect-mediated
phase-transitions in two dimensions [3,4], later refined by
Young [5]. According to this picture, known as KTHNY sce-
nario, two-dimensional solids can melt via two distinct phase
transitions as temperature is increased. First, the unbinding
of neutral pairs and triplets of dislocations transforms a crys-
tal, characterized by quasi-long-ranged translational order and
long-ranged sixfold orientational order, into a hexatic liquid
crystal, with quasi-long-ranged orientational order and short-
ranged translational order. Second, as temperature is further
increased, pairs of five- and sevenfold disclinations unbind,
driving the transition of the hexatic liquid crystal into an
isotropic liquid, in which both translational and orientational
order are short-ranged.

For the past four decades, the hexatic phase and KTHNY
melting scenario have been subject to extensive theoreti-
cal and experimental investigation, aimed at clarifying the
nature of the individual solid-hexatic and hexatic-isotropic
phase transitions, as well as the role of material properties.
Large-scale numerical simulations [6,7], experiments with
superparamagnetic colloids [8,9] and, more recently, tilted
monolayers of sedimented colloidal hard-spheres [10], in par-
ticular, have progressively shed light on several fascinating
aspects of these transitions, while opening new avenues in
condensed matter physics at the interface between statistical
mechanics, material science and topology [11–16]. By con-
trast, the hydrodynamic behavior of hexatics has received little
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attention and, with the exception of a small number of pio-
neering works, e.g., Refs. [17–20], is still largely unexplored.

Yet, recent findings in tissue mechanics have renewed in-
terest in hexatic hydrodynamics, by providing this phase of
matter with unexpected biological relevance. Like atomic,
molecular and colloidal systems, that exhibit low temperature
two-dimensional crystal phases, tissues are often neither or-
dered solids nor disordered liquids, but inhabit a continuum
of intermediate states known as the epithelial-mesenchymal
spectrum [21]. This versatility lies at the heart of a myr-
iad processes that are essential for life, such as embryonic
morphogenesis [22] and wound healing [23], as well as
life-threatening conditions, such as metastatic cancer [21].
Using a cell-resolved computational model of confluent tis-
sues [24,25], Li and Pica Ciamarra have demonstrated that the
solid and the isotropic liquid states of these model-epithelia
are separated by an intermediate hexatic phase, in which
cells are orientationally ordered and yet able to flow [26].
Upon heating, the phase diagram is further enriched by var-
ious examples of phase coexistence, including solid-isotropic
and hexatic-isotropic. This remarkable discovery sheds new
light on the complex physics of tissues and, simultaneously,
provides a strong motivation for aiming at a deeper under-
standing of hexatic hydrodynamics and, more generally, of
the hydrodynamics of p-atic liquid crystals, that is liquid
crystals endowed with generic p-fold rotational symmetry
(i.e., symmetry with respect to rotations by 2π/p, with p =
1, 2, 3 . . .).

Aside from biological matter, p-atic order has been identi-
fied in a variety of soft matter systems spanning a vast range
of length scales: from molecules to centimeter-sized granular
particles. Figure 1 illustrates three examples of p-atic liquid
crystals in colloidal suspensions. Triatic order (i.e., p = 3) has
been achieved in confined triangular platelets in aqueous so-
lution (Fig. 1(a) and Ref. [27]) and its existence has also been
predicted in vesicles comprising threefold symmetric building
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FIG. 1. Examples of p-atic colloidal suspensions. (a) Triatic
(p = 3) colloidal platelets (courtesy of Thomas Mason, adapted
from Ref. [27]). (b) Possible tetradic (p = 4) suspension of colloidal
cubes (courtesy of Janne-Mieke Meijer, adapted from Ref. [28]).
(c) Isotropic monolayer of sedimented colloidal hard spheres (top)
coexisting with a hexatic phase (p = 6, bottom) (courtesy of Roel
Dullens, adapted from Ref. [10]). In all panels, the scale bar corre-
sponds to 10μm.

blocks, possibly obtained from block-copolymers [16]. Anal-
ogously, tetratic order (i.e., p = 4) is observed in suspensions
of colloidal squares (Fig. 1(b) and Ref. [28]) and, at the
macroscopic scale, in collections of vibrated granular rods
[29,30], which lack specific fourfold symmetry at the scale
of the individual building blocks. Even more remarkably,
pentatic liquid crystals (i.e., p = 5) have been recently engi-
neered upon melting preassembled quasicrystalline Penrose
tilings, consisting of kite- and dart-shaped colloidal particles
[31]. Finally, because of their role in the melting of crystalline
monolayers of spherically symmetric constituents, hexatic liq-
uid crystals (i.e., p = 6) are ubiquitous in two-dimensional
matter, whether assembled from electrons in liquid He [32],
vortices in superconductors [33,34], or colloidal suspensions
(Fig. 1(c) and Refs. [8–10]), etc.

In this article we formulate a comprehensive hydrodynamic
theory of two-dimensional p-atic liquid crystals. Previous hy-
drodynamic theories (e.g., Refs. [17–20]) are characterized
by continuous O(2) rotational symmetry, which is higher
symmetry than required by the discrete rotational symme-
try of p-atics. By contrast, here we show that the discrete
p-fold symmetry allows the inclusion of additional terms in
the hydrodynamic equations, which, in turn, lead to novel
phenomena, such as the possibility of flow alignment at high
shear rates, even for arbitrary p values (thus, in particular, for
p = 6). Our approach is based on a tensorial hydrodynamic

variable, i.e., the p-atic tensor order parameter, that directly
embodies the discrete rotational symmetry of p-atic phases.
Exploiting the symmetries and the algebraic structure of this
tensor, we will construct the equations governing the dynam-
ics of p-atics, as well as the stress contribution associated
with a departure from the p-atic ground state. In addition,
we investigate the effects of an imposed shear flow on p-atic
order. Our two most striking conclusions can be summarized
as follows.

(1) An applied shear makes p-atic order long-ranged, in
contrast to the quasi-long-ranged order that occurs in absence
of shear. In particular, we find that at small shear rates ε̇, the
magnitude |�p| of the complex order parameter scales like a
power law with the applied shear rate ε̇, i.e.,

|�p| ∼ ε̇ ηp/4, (1)

where 0 < ηp � 1/4 is the exponent that governs the decay
of orientational correlations in the absence of an applied shear
[1,2]. While in general nonuniversal, ηp = 1/4 universally at
the Kosterlitz-Thouless transition, where orientational order is
lost due to disclination unbinding [1].

(2) In the presence of a simple shear flow, p-atics orient at
specific angles with respect to the flow direction. This effect,
referred to as “flow alignment” in the literature of nematic
liquid crystals [35,36], was only known for p = 1 and p = 2,
where it occurs at arbitrary shear rate, unless the mesogens
are anchored to a wall, which enforces a specific preferential
direction. For p > 2, on the other hand, flow alignment occurs
exclusively if the shear rate ε̇ exceeds a given threshold.

Both of these predictions could be experimentally tested
on, e.g., free-standing liquid crystal films [37–42]. The latter
is a powerful and well established setting, in which a thin film
of liquid crystal is suspended in a wire frame and, possibly,
set in motion by shearing the frame. In particular, Eq. (1)
could be readily validated upon measuring the order param-
eter |�p| as a function of the applied shear rate ε̇. In nematic
films (p = 2), the latter could be performed by measuring
the optical birefringence, which is directly proportional to
the magnitude of the nematic order parameter, whereas for
p > 2, an analogous measurement could be obtained from
the amplitude of the angular modulation of in-plane x-ray
scattering from the film. Both birefringence measurements
and x-ray scattering are practical techniques, which have been
successfully employed in experiments on thin films. This
would thereby enable one to test the universal value of ηp

at the Kosterlitz-Thouless transition, in addition to validating
Eq. (1) in systems in which ηp can be independently inferred
from measurements at equilibrium. Furthermore, in Sec. VI,
we present several specific predictions that could serve as a
starting point for experimental investigations. An especially
interesting case is the Taylor-Couette flow of triatics (p = 3),
which allows a direct measurements of the phenomenological
parameter governing the coupling between triatic order and
flow.

The remainder of this paper is organized as follows. In
Sec. II we lay down our basic mathematical terminology and
notation and introduce the p-atic order parameter tensor Qp,
which plays a central role in our hydrodynamic theory. In
Sec. III, we construct the hydrodynamic equations of p-atics
and discuss about the additional terms arising when the p-fold
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rotation symmetry is fully taken into account. In Sec. IV we
investigate the effects of backflow, namely, the hydrodynamic
flow driven by spatial variations of p-atic order. In Sec. V
we investigate the effect of flow on the orientational order
of unconfined p-atics. Using fluctuating hydrodynamics and
renormalization group (RG) arguments we demonstrate that,
remarkably, a shear flow of arbitrary finite shear rate induces
long-ranged orientational order in p-atics. In Sec. VI we
consider two examples of viscous flow in p-atics, namely,
simple shear and Taylor-Couette flow, and demonstrate how
flow alignment can arise at large shear-rates depending on
the specific flow geometries and p values. Finally, Sec. VII
is devoted to conclusions. A shorter account of our results can
be found in Ref. [43].

II. THE P-ATIC TENSOR

There are, at the moment, two approaches to describe
structured fluids whose constituents have p-fold rotational
symmetry that propagates over the macroscopic scale. The
first approach relies on a tensor order parameters endowed
with the same p-fold rotational symmetry. For instance, po-
lar fluids (i.e., p = 1) can be straightforwardly described in
terms of a polarization vector, whereas nematic liquid crys-
tals, which are invariant under 180◦ rotations of the nematic
director n (i.e., p = 2), require a rank-2 traceless and sym-
metric tensor: i.e., Q2 = |�2|(n ⊗ n − 1), with |�p| the scalar
order parameter and 1 the identity tensor [35]. This tensor
is invariant under the transformation n → −n, thus it repre-
sents a suitable hydrodynamical variable to describe flow in
nematics. The second approach, pioneered by Lammert et al.
for nematics [44], and recently extended to describe phases
characterized by generic three-dimensional point groups [45],
consists of a lattice-gauge formulation, in which a vectorial
director field is coupled with auxiliary gauge fields, designed
to implement the desired symmetry in the Hamiltonian. As
the latter approach is inherently discrete, it cannot be inte-
grated into a continuum mechanics framework. Therefore, we
will adopt the former strategy and formulate a hydrodynamic
theory using a tensor order parameter.

A. Mathematical preliminaries and notation

In this section we introduce the essential mathematical
concepts and notation that will be used throughout the re-
mainder of the article. The central object in our hydrodynamic
theory of p-atic liquid crystals is a tensor order parameter
endowed with the same p-fold rotational symmetry of the
p-atic phase. In general, rank-p tensors will be indicated as

T = Ti1i2··· ipei1 ⊗ ei2 ⊗ · · · ⊗ eip, (2)

where ein , with n = 1, 2 . . . p, are basis vectors and
summation over repeated indices is implied. Analogously, we
define the n − th tensorial power of a generic tensor T as the
n-fold product of the tensor with itself:

T⊗n = T ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
n times

. (3)

Contracting one index of a generic rank-p tensor, T , with
one index of a rank-q tensor, U , yields a rank-(p + q − 2)

tensor. This operation will be indicated with a dot product, in
analogy with vectorial and matrix multiplication. That is

(T · U )i1··· ip−1 j2··· jq = Ti1··· ip−1kUk j2··· jq . (4)

Similarly, the contraction of two indices will be indicated with

(T : U )i1··· ip−2 j3··· jq = Ti1··· ip−2klUlk j3··· jq . (5)

The inner product of two rank-p tensors, on the other hand,
will be denoted in the following by the symbol �, that is

T � U = Ti1i2··· ipUi1i2··· ip . (6)

In particular, the Euclidean norm of the tensor is given by

|T |2 = T � T . (7)

Evidently, different choices of the dummy index k and l
in Eqs. (4) and (5) yield different tensors, unless T and
U are both symmetric. Although there is no unambiguous
definition of a trace for rank-p tensors with p > 2, this
exists for symmetric tensors, because of the symmetry under
permutation of the indices. Consider then a symmetric rank-p
tensor S, such that

Si1i2··· ip = Siσ1iσ2··· iσ p, σ ∈ Sp, (8)

where Sp is the group of permutations of {1, 2 . . . p}. The
trace of such a symmetric tensor is defined as the rank-(p − 2)
tensor obtained upon contracting any two indices

(trS)i1i2··· ip−2 = Si1i2··· ip−2 j j, (9)

and is symmetric by construction.
Finally, we will denote with the symbol [[· · · ]] the operation

of rendering an arbitrary rank-p tensor symmetric and trace-
less. For p � 2 this can be achieved by contracting a rank-p
tensor T with the special rank-2p tensor Δp,p, that is[[

Ti1i2··· ip

]] = Δi1i2··· ip j1 j2··· jpTj1 j2··· jp . (10)

In three dimensions, an expression for Δp,p was obtained in
Ref. [46] using multipole potentials. An analogous expression
can be obtained in two dimensions (see Appendix A):

Δp,p = (−1)p+1

p!(2p − 2)!!
∇⊗p

(
r2p∇⊗p log

r

�

)
, (11)

where r =
√

x2 + y2, � an arbitrary length scale and
(∇⊗p)i1i2... ip = ∂i1∂i2 . . . ∂ip . Δp,p is an isotropic tensor, that
is a tensor whose structure is invariant upon rotation of the
reference frame. It is symmetric with respect to any permu-
tation of the first p and the last p indices: i.e., im ↔ in and
jm ↔ jn, with m, n = 1, 2 . . . p; as well as with respect to the
exchange of the full set of i- and j-indices: i.e., {i1i2 · · · ip} ↔
{ j1 j2 · · · jp}. Furthermore, contracting any pair among the
first or last p indices, yields the null tensor:

Δkki3··· ip j1··· jp = Δi1i2··· ipkk j3··· jp = 0. (12)

This latter property, in particular, guarantees that

tr [[T ]] = 0p−2, (13)

where 0p−2 is the rank-(p − 2) tensor whose elements are
identically zero: i.e., (0p−2)i1i2···ip−2 = 0. For p = 1, Eq. (11)
yields the identity tensor: i.e., Δ1,1 = 1.
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As noted by Park and Lubensky in Ref. [47], various calcu-
lations involving traceless and symmetric rank-p tensors can
be conveniently performed by representing the tensor in terms
of two circular basis vectors ε±, defined as

ε± = ex ± iey√
2

, (14)

which can readily be shown to satisfy the relations

ε+ · ε+ = ε− · ε− = 0, (15a)

ε+ · ε− = 1, (15b)

as well as the tensorial identity

ε± ⊗ ε∓ = 1 ∓ iε

2
, (16)

with ε is the antisymmetric tensor: i.e., εxx = εyy = 0 and
εxy = −εyx = 1. By virtue of Eq. (15), one can readily see that
any rank-p tensor of the form T = T ε

⊗p
± , with T a scalar and

the exponent p, as in Eq. (3), is symmetric and traceless [48].
Furthermore, it is possible to show that

Δp,p = ε
⊗p
− ⊗ ε

⊗p
+ + ε

⊗p
+ ⊗ ε

⊗p
− . (17)

B. Order parameter tensor in p-atics

Let us consider a p-atic phase, whose microscopic con-
stituents can be assigned a direction

ν = cosϑ ex + sin ϑ ey. (18)

The latter may correspond to a particular direction at the
molecular scale (e.g., the position of a specific functional
group with respect to the center of mass of the molecule)
or be conventionally assigned for perfectly p-fold symmetric
constituents. Local p-atic order can then be identified starting
from the following microscopic complex function [1]:

ψp = eipϑ . (19)

In two-dimensional equilibrium systems, p-atic order is quasi-
long-ranged and is characterized by a power-law decaying
two-point correlation function [1,2]:

〈ψ∗
p (r)ψp(0)〉 ∼ |r|−ηp, (20)

where 〈· · · 〉 denotes the ensemble average and ηp is a positive
nonuniversal exponent depending upon temperature and the
p-atic orientational stiffness Kp (see Sec. III B), given by

ηp = p2kBT

2πKp
� 1

4
, (21)

where the inequality prevents topological defects from un-
binding at equilibrium [49]. The p-atic order parameter can
be expressed as

�p = 〈ψp〉 = |�p|eipθ , (22)

where |�p| and θ are, respectively, the scalar order
parameter amplitude and average orientation. Quasi-long-
range order implies that 〈ψp〉 is scale-dependent and van-
ishes at large length scales (see Sec. V and Ref. [50]).

(b)(b) (c)(c)

(a)

0

FIG. 2. (a) Schematic illustration of triatic building blocks
(left) together with the corresponding coarse-grained p-atic director
(right). The molecular and average orientations, here denoted as ϑ
and θ, respectively, are related by Eq. (22). (b), (c) Typical configu-
ration of the triatic director (b) and velocity field (c) coarsening from
an initially disordered state. The data in displayed in panels (b) and
(c) have been obtain by a numerical integration of the hydrodynamic
equation given in Sec. III.

Specifically,

|�p| ∼
(

a

�

)ηp/2

, (23)

where a is a short-distance (i.e., ultraviolet) cutoff and � the
length scale at which the system is probed.

As in nematics, a symmetric and traceless p-atic order
parameter tensor can be constructed by averaging the p-th
degree tensorial powers of the microscopic direction ν within
a fluid element, this being defined as a portion of the system
that is sufficiently small to be considered infinitesimal with
respect to the system size and yet sufficiently large to contain
a macroscopic number of p-atic building blocks:

Qp =
√

2p−2 [[〈ν⊗p〉 ]] =
√

2p−2 |�p| [[n⊗p ]], (24)

where

n = cos θ ex + sin θ ey (25)

is the p-atic director field [Fig. 2(a)]. Consistent with the
standard convention in nematics, the numerical prefactor has
been chosen in such a way as to obtain

|Qp|2 = |�p|2
2

. (26)

Furthermore, using the auto-orthogonality of circular ba-
sis vectors, embodied in Eqs. (15), one can express the
p-atic order parameter tensor in the following equivalent
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forms:

Qp = R[�pε
⊗p
− ] = R[�∗

pε
⊗p
+ ] = 1

2 (�pε
⊗p
− +�∗

pε
⊗p
+ ), (27)

where R[· · · ] yields real part of any complex quantity,
whereas I[· · · ] will be used for the imaginary part. For |�p| =√

2, these expressions coincide the p-atic tensor introduced in
Ref. [47]. Finally, using standard algebraic manipulations, one
can prove that contracting the Qp tensor with itself yields the
isotropic tensor, that is

Qp · Qp = |�p|2
4

Δp−1,p−1. (28)

As we will see in the next section, Eq. (28) has implications
for the structure of the viscosity tensor and other coupling
tensors of the theory.

III. HYDRODYNAMIC EQUATIONS OF
TWO-DIMENSIONAL P-ATICS

A. Hydrodynamic variables

Our goal is to describe the spatiotemporal evolution of
p-atic liquid crystals at large length and long timescales.
To this end, we start by identifying a set of “hydrodynamic
variables,” namely, material fields whose evolution rate van-
ishes as the length scale at which they are probed diverges
(see, e.g., Ref. [51]). Whereas almost any variable determined
by a macroscopic number of degrees of freedom relaxes
to its equilibrium value on microscopic timescales, these
“slow” variables naturally arise in critical phenomena (see,
e.g., Ref. [52]) or, away from criticality, in the presence of
conservation laws and broken continuous symmetries. In the
absence of external stimuli, films of p-atic liquid crystals
are characterized by four conserved quantities, namely, the
system’s total mass M = ∫

dA ρ, momentum P = ∫
d2r ρv,

energy E = ∫
d2r ρe and entropy S = ∫

d2r ρs, as well as a
broken rotational symmetry, embodied in the p-atic tensor Qp
or, equivalently, in the complex order parameter �p, defined
in Eq. (22).

The hydrodynamic equations governing the evolution
of the density fields associated with conserved quantities,
namely, ρ, ρv, e, and s, follow directly from the fundamental
laws of continuum mechanics (see, e.g., Ref. [53]) and are
given by

Dρ

Dt
+ ρ∇ · v = 0, (29a)

ρ
Dv

Dt
= ∇ · σ + f , (29b)

ρ
De

Dt
+ ∇ · Q = σ : ∇v, (29c)

ρT
Ds

Dt
+ ∇ · Q = σ (v) : ∇v + 2R, (29d)

where D/Dt = ∂t + v · ∇ is the material derivative, σ the
stress tensor, f the external force per unit area, Q the heat flux
density, resulting from local energy and entropy variations,
and 2R � 0 the entropy production rate. The stress tensor is
customarily decomposed into a static component σ (s) and a
dynamic component σ (d): i.e., σ = σ (s) + σ (d). The latter, in
turn, can further be divided into an energy preserving reactive

component σ (r) and an energy dissipating viscous component
σ (v), which gives rise to local entropy production: i.e., σ (d) =
σ (r) + σ (v).

Equations (29) must be complemented with the equa-
tion governing the dynamics of the p-atic tensor Qp and a
constitutive equation for the stress tensor σ in terms of the
other hydrodynamic variables. Both tasks will be accom-
plished in the next subsection.

B. Hydrodynamics of the p-atic tensor

The hydrodynamic equation describing the spatiotempo-
ral evolution of the broken symmetry variable �p are most
conveniently derived in terms of the order parameter tensor
Qp, defined in Sec. II B, by taking advantage of the algebraic
structure of the tensor to achieve frame invariance. Specifi-
cally, as Qp is traceless and symmetric, one can construct its
hydrodynamic equation by expressing its time derivative as
a sum of all possible symmetric and traceless rank-p tensor
combinations of the velocity gradient tensors ∇v with Qp and
its gradients. In nematics, this procedure, as explained in, e.g.,
Ref. [54], leads to the following well established parabolic
partial differential equation:

dQ2

dt
= �2H2 + λ2 [[u ]] + λ̄2tr(u)Q2, (30)

where the left-hand side indicates the corotational time deriva-
tive of a rank-2 tensor field,

dQ2

dt
= DQ2

Dt
− Q2 · ω + ω · Q2. (31)

In Eqs. (30) and (31) u = [∇v + (∇v)T]/2 and ω = [∇v −
(∇v)T]/2, with T denoting transposition, are the strain rate
and vorticity tensors, corresponding, respectively, to the sym-
metric and antisymmetric part of the velocity gradient tensor.
On the right-hand side of Eq. (30), H2 = −δF/δQ2 is the
molecular tensor describing the relaxation of the nematic
phase toward the minimum of the free energy F , with �−1

2
a rotational viscosity and λ2 and λ̄2 dimensionless constants.
The quantity λ2, in particular, is referred to as the flow align-
ment parameter and it can cause the nematic director to align
with an imposed shear flow (see, e.g., Ref. [35], and Sec. VI).
The last term on the right-hand side of Eq. (30), on the other
hand, affects the magnitude of the scalar order parameter and
vanishes identically in the case of incompressible flow, where
tr(u) = ∇ · v = 0. Notably, the first term on the right-hand
side of Eq. (30) has the opposite signature with respect to
dQ2/dt under time reversal, whereas the last two terms have
the same signature. Hence, these terms embody irreversible
(dissipative) and reversible (reactive) processes, respectively.

A hydrodynamic equation such as Eq. (30) could, in
principle, be formulated for any p-atic liquid crystal upon con-
structing all possible rank-p tensors, obtained by contracting
∇v and Qp, that are simultaneously symmetric and traceless.
In the following, we demonstrate that such a hydrodynamic
equation can indeed be constructed in the form

dQp

dt
= �pH p + Lp + N p, (32)
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where H p = −δF/δQp is a p-atic generalization of the molec-
ular tensor and Lp and N p are, respectively, linear and
nonlinear tensorial functions of the strain-rate u. The Landau
free energy F = ∫

d2r f can be readily constructed from the
free-energy density,

f = 1
2 Lp|∇Qp|2 + 1

2 Ap|Qp|2 + 1
4 Bp|Qp|4

= 1
4 Lp|∇�p|2 + 1

4 Ap|�p|2 + 1
16 Bp|�p|4, (33)

where have made use of Eq. (26) to derive the second equality.
The constant Lp is the order parameter stiffness of p-atic
phases, while the phenomenological coefficients Ap and Bp

favor a nonvanishing |�p| value in the ordered phase (i.e.,
where Ap < 0), away from the system boundary or topological
defects. Specifically,

∣∣� (0)
p

∣∣ =
√

−2Ap

Bp
, (34)

at the minimum of the free energy. We stress that |� (0)
p | is the

order parameter magnitude at the scale of the ultraviolet cutoff
a, introduced in Eq. (23), and should not be confused with
the renormalized order parameter |�p|, which, as explained
in Sec. (II B), vanishes in the thermodynamic limit. Cubic
terms, such as those obtained upon contracting the tensor Q⊗3

p ,
cannot be constructed for odd p values and, using Eqs. (15)
and (27), can be shown to vanish identically for even p values
in two dimensions. In the case of two-dimensional nematics
(i.e., p = 2), the free-energy density, Eq. (33), can be aug-
mented with additional elastic terms, such as Qi j∂iQkl∂ jQkl , to
independently account for the costs of bending (i.e., longitudi-
nal) and splay (i.e., transverse) deformations [55]. For p > 2,
such a construction is not possible and the system is elasti-
cally isotropic, consistently with the intuition that a notion of
longitudinal and transverse directions can be unambiguously
defined only for rod-shaped objects.

From the free-energy Eq. (33), one obtains

H p = Lp∇2Qp − (Ap + Bp|Qp|2)Qp, (35)

which is symmetric and traceless because Qp is. Similarly,
a p-atic generalization of the corotational derivative can be
constructed starting from the generic expression

dQp

dt
= DQp

Dt
− κ [[Qp · ω ]], (36)

where κ is a numerical prefactor, which can be determined as
follows. Consider a system in which |�p| is uniform through-
out the system. Then, using Eqs. (27) and (36), contracting
both sides of the resultant equation with ε

⊗p
+ and using the

orthogonality relation Eqs. (15), one can cast Eq. (36) in the
form

dθ

dt
= Dθ

Dt
− κ

p
ωxy. (37)

The last term on the right-hand side of this equation describes
the effect of rigid-body rotations on the p-atic director. It must
be equal to ωxy = (∂xvy − ∂yvx )/2, hence κ = p.

Now, taking this into account and momentarily ignoring
the tensors Lp and N p in Eq. (32) yields the following equa-

tion for the local average orientation θ :

Dθ

Dt
= Kp

γp
∇2θ + ωxy, (38)

where the orientational stiffness Kp [see Eq. (21)] and the
rotational viscosity γp are given by

Kp = p2|�p|2
2

Lp, γp = p2|�p|2
2

�p
−1. (39)

For p = 6, Eq. (38) coincides with the hydrodynamic equa-
tion for hexatics first proposed by Zippelius et al. [17] and
later adopted in Refs. [18–20]. In the following, we will
demonstrate that Eq. (38) can in fact be augmented by
additional terms, originating from the interplay between ori-
entational order and flow and embodied in the tensors Lp and
N p. For p > 3, these terms depend upon high order derivatives
of the velocity field, or nonlinear powers of the strain rate
and, unlike in nematics, are “irrelevant” in the RG sense of
not altering the scaling or form of equilibrium correlation
functions at large length and long timescales. However, in
driven systems, in particular those subject to externally im-
posed shear flows, they can lead to new phenomena, including
flow alignment, in contrast to the predictions of the linear
theory [17].

Although unknown a priori, the tensors Lp and N p in
Eq. (32) can be expanded in gradients of the velocity field
or, analogously, of powers of the strain rate tensor u. Each
gradient term is proportional to the wave-number |q| = 2π/�,
with � the length scale under consideration, in the Fourier
expansion of the velocity. Therefore, at large length scales,
one can truncate the expansion at the lowest-order term whose
symmetric and traceless part is nonzero. For p = 2, for in-
stance, the coupling can be expressed, at the lowest order in
both q and Q2 in terms of the isotropic Δp,p tensor introduced
in Sec. II A,

L2 = (λ2Δ2,2 + λ̄2Q2 ⊗ 1) : u

= λ2[[u]] + λ̄2tr(u)Q2 + O(|q|2), (40)

consistent with Eq. (30). We stress that the isotropy of the Δ2,2

tensor guarantees that the resulting hydrodynamic equation is
frame invariant and is thus indispensable in this construction.
Now, although higher-order isotropic tensors can be obtained
from Δp,p, with the exception for the p = 2 case, this yields
tensors whose rank 2p is higher than the value p + 2 re-
quired to couple Qp and u. For even p values, Δp,p could
be contracted with another isotropic tensor of rank-(p − 2),
but the only one available in two dimensions is Δp/2−1,p/2−1

and the tensor resulting from this contraction is either null or
anisotropic (i.e., not frame invariant). For odd p values, no
isotropic tensor exists such that, when contracted with Δp,p,
yields a rank-(p + 2) tensor. From this we conclude that an
O(|q|) coupling between p-atic order and flow, such as that
given by Eq. (40), does not exist for any p > 2-atic liquid
crystal.

In contrast, various flow alignment terms can be con-
structed of the form

∞⊗
i=1

[[∇⊗αi u⊗βi ]] = O(|q|α1+β1+α2+β2···), (41)
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where the exponents (αi, βi ) ∈ N are solutions of the
Diophantine equation∑

i

(αi + 2βi )(1 − δ0,βi ) = p, (42)

and we use the convention (· · · )⊗0 = 1. Now, the only term of
this form linear in u is obtained when β1 = 1 and α1 = p − 2.
Thus, the linear flow alignment tensor Lp is given by

Lp = λp[[∇⊗(p−2)u]] + λ̄ptr(u)Qp, (43)

with λp and λ̄p phenomenological constants. As we will
shortly demonstrate, this tensor represents the only reactive
coupling between orientational order and flow that all p-atics
have in common. Notice that [[Qp · u]] = 1/2 tr(u)Qp, as one
can demonstrate using the representation Eqs. (27) and (17)
of the tensor Δp,p and the order parameter tensor, respectively,
in terms of the circular basis vectors, as well as Eqs. (15)
and (16). Thus, the linear flow alignment tensor Lp has no
contribution other than those featured in Eq. (43).

Conversely, for sufficiently large p values, Eqs. (41) and
(42) give rise to several nonlinear terms that, unlike Eq. (43),
differ depending on whether p is even or odd and correspond
to both reversible and irreversible processes. At the lowest
order in q, these can be expressed in the generic form

N p = νp[[∇⊗(p mod 2)u⊗�p/2�]], (44)

where νp is another phenomenological constant, �· · · � denotes
the floor function and p mod 2 = p − 2�p/2� is zero for even
p values and one for odd p values.

Some examples are in order. For p = 2 and 3, the only
solutions of Eq. (42) are, respectively, (α1, β1) = (0, 1) and
(α1, β1) = (1, 1). Thus, the coupling between local orienta-
tion and flow is, at this order, embodied solely in the linear
flow alignment tensor, Eq. (43), whereas ν2 = 0 and ν3 = 0.
For p = 4, however, Eq. (42) has two independent solutions,
(α1, β1) = (2, 1) and (0,2), and the corresponding nonlinear
flow alignment tensor is given, at the lowest order in q, by

N4 = ν4 [[u⊗2 ]]. (45)

As this tensor has opposite signature with respect to dQ4/dt
under time-reversal, it describes an irreversible process orig-
inating from the interplay between tetradic order and flow,
with no counterpart in either nematics or triatics. For
p = 5, Eq. (42) has instead three independent solutions:
(α1, β1, α2, β2) = (3, 1, 0, 0), (1,2,0,0), and (0,1,1,1). The
last two of these are both of order O(|q|3) and feature, in
general, different terms, but they yield the same function of
u under the action of the [[· · · ]] operator. Thus,

N5 = ν5 [[∇u⊗2 ]]. (46)

Similarly, for the most physically relevant case p = 6,
Eq. (42) has five independent solutions: (α1, β1, α2, β2) =
(4, 1, 0, 0), (0,3,0,0), (1,1,1,1), (0,1,2,1), and (2,2,0,0) from
which, at the lowest order in q, one finds

N6 = ν6 [[u⊗3 ]]. (47)

Unlike the previous cases, N6 is odd under time reversal, thus
it describes a reversible process.

In summary, the dynamics of the p-atic tensor can gener-
ally be described by the following partial differential equation:

DQp

Dt
=�pH p + p[[Qp · ω]] + λ̄ptr(u)Qp

+ λp[[∇⊗(p−2)u]] + νp[[∇⊗(p mod 2)u⊗�p/2�]]. (48)

The apparent complexity of Eq. (48) simplifies considerably
when expressed in terms of the complex order parameter �p,
as given in Eqs. (24) and (27). This can be done by inserting
Eq. (27) into Eq. (48), and then contracting both sides of the
resultant equation with ε

⊗p
+ . Using the orthogonality relations,

Eqs. (15), then yields

D�p

Dt
= 2�pLp∂∂̄�p − �p

(
Ap + B4

2
|�p|2

)
�p

+ ipωxy�p + λ̄ptr(u)�p + 2λp∂
p−2U

+ 2νp∂
p mod 2 U�p/2�, (49)

where we have introduced the complex strain-rate:

U = (ε+ ⊗ ε+) : u = uxx − uyy

2
+ iuxy, (50)

as well as the complex derivative ∂ = (∂x + i∂y)/
√

2 and its
conjugate ∂̄ = (∂x − i∂y)/

√
2.

For p = 2, Eq. (48) reduces to the classic hydrodynamic
equation for the nematic tensor, Eq. (30). For p > 2, however,
Eqs. (48) and (49) provide a generalization of Eq. (38), in
which the interplay between p-atic and flow is not limited
to the precession of the local orientation θ in the vorticity
field, but includes couplings with the local strain rate, whose
strength is set by the material parameters λp, λ̄p and νp. With
the exception of λ2 and λ̄p, which are dimensionless numbers,
the parameters λp and νp depend upon intrinsic length and
timescales. Denoting these with � and τ , one has

λp ∼ �p−2, νp ∼ �p mod 2 τ �p/2�−1. (51)

As a consequence, the linear flow alignment terms become rel-
evant when the strain rate u undergoes spatial variations over
a length scale of order �, whereas the nonlinear terms yield
measurable effects when u is comparable in magnitude with
1/τ : i.e., ε̇τ ≈ 1, where ε̇ is the typical magnitude of uxx, uyy,
and uxy. Thus, unlike in nematics, hydrodynamic flow may
or may not affect the dynamics of the p-atic director in ways
other than the simple advection and precession, depending on
the specific value of the material parameters. In some, but
not all, cases, these couplings between flow and orientation
may never lead to measurable effects. Furthermore, λp and νp

could, in principle, depend on the shear rate ε̇, e.g.,

λp = λ(0)
p + λ(1)

p ε̇ + λ(2)
p ε̇2 + · · · , (52a)

νp = ν (0)
p + ν (1)

p ε̇ + ν (2)
p ε̇2 + · · · . (52b)

For small shear rates, higher-order terms are evidently unim-
portant, but the same argument does not apply at large shear
rates since these terms would become comparable in mag-
nitude to those in Eqs. (48) and (49). As we will discuss in
Sec. VI, these considerations are particularly important in the
context of flow alignment.

024701-7



LUCA GIOMI, JOHN TONER, AND NILADRI SARKAR PHYSICAL REVIEW E 106, 024701 (2022)

Finally, the case p = 1 is sufficiently different from the rest
to justify a separate treatment. In this case, the order parameter
is the polarization vector P = |�p|n, whose hydrodynamic
equation can be obtained, on the basis of phenomenologi-
cal arguments (e.g., Ref. [56]) or microscopic models (e.g.,
Ref. [57]), as follows:

DP
Dt

= �1H1 − ω · P + λ1u · P + λ̄1tr(u)P, (53)

where H1 = −δF/δP is the molecular field. Under the as-
sumption of equal splay and bending moduli, the free-energy
density can be expressed as

f = 1
2 L1 |∇P|2 + 1

2 A1|P|2 + 1
4 B1|P|4, (54)

from which H1 can be readily found in the form

H1 = L1∇2P−(A1 + B1|P|2)P. (55)

This finally allows us to cast Eq. (53) in terms of the polar
complex order parameter �1 = |�| exp iθ :

D�1

Dt
= 2�1L1∂∂̄�1 − �1

(
A1 + B2|�p|2

)
�1

+ iωxy�1 + λ1U�
∗
1 +

(
λ1

2
+ λ̄1

)
tr(u)�1. (56)

We stress that the cases p = 1, 2 are the only ones for which
the complex strain rate U is linearly coupled to the order
parameter ψp at leading order in derivatives. As we will see
in Secs. V and VI, this peculiarity of polar and nematic liquid
crystals crucially affects the onset of flow alignment.

C. Hydrodynamic equations for the orientation field

Equations (48), (49), (53), and (56) represent the most
generic hydrodynamic equations for p-atic liquid crystals with
arbitrary discrete rotational symmetry. Yet, in various prac-
tical situations, the phase θ of the complex order parameter
is the only hydrodynamic variable resulting from the broken
rotational symmetry, whereas the scalar order parameter |�p|
relaxes to its equilibrium value in a finite time. In the case
of incompressible flows (i.e., ∇ · v = 0), this occurs when θ

varies over length scales much larger than

ξm =
√

Lp

|Ap| . (57)

Thus, in particular, in the absence of topological defects or
other singular features, an example of which will be given
in Sec. VI in the context of the so called flow tumbling
instability. In compressible flows, this condition is further
augmented by the requirement for the velocity field to be
time-independent, as long as λ̄p �= 0.

Under these circumstances, |�p| is uniform throughout the
system and one can express the hydrodynamic equations in
terms of the sole angle θ :

Dθ

Dt
= D∇2θ + ωxy − |Hp| sin(pθ − ArgHp), (58)

where D = Kp/γp is the rotational diffusion coefficient and
the complex function Hp, hereafter referred to as flow align-
ment field, embodies all the contributions arising from the

interaction between p-atic order and flow. For p � 2, this can
be expressed as

Hp = 2

p
∣∣� (0)

p

∣∣ (λp∂
p−2U + νp∂

p mod 2U�p/2�). (59)

Similarly, for p = 1, Eq. (56) reduces to

Dθ

Dt
= D∇2θ + ωxy − |H1| sin (2θ − ArgH1), (60)

with the flow alignment field given by

H1 = λ1∣∣� (0)
1

∣∣ U. (61)

It is worth noticing that H1 and H2 are formally identical.
Thus, for p = 1 and 2, the angle θ obeys to the same hydro-
dynamic equation.

D. Stresses in p-atics

To complete the derivation of Eq. (29b), one needs to cal-
culate the static and dynamic components of the stress tensor.
The former can be expressed as

σ (s) = −P1 + σ (e), (62)

where P is the pressure, σ (e) is the elastic stress, arising in
response to static deformations of a fluid patch. This can
be calculated using the principle of virtual work (see, e.g.,
Ref. [58]) by equating the work performed by an arbitrary
small deformation acting upon a generic fluid patch to the cor-
responding free-energy variation. This procedure, reviewed in
detail in Appendix B, yields

σ
(e)
i j = −Lp∂iQk1k2··· kp∂ jQk1k2··· kp, (63)

up to diagonal terms that can be incorporated into the
pressure P.

The dynamic contribution to the reactive stress, on the
other hand, can be further decomposed into a symmetric part,
arising from the linear flow alignment tensor Lp, and an an-
tisymmetric part, resulting from the corotational derivative in
Eq. (48). Both contributions can be calculated starting from
the total entropy production rate (see, e.g., Ref. [59]), which
is given by

Ṡ =
∫

d2r

T

[
σ (d) : ∇v + H p � DQp

Dt

]
. (64)

Taking σ (d) = σ (r) + σ (v) and casting Eq. (64) in the form of
Eq. (29d), yields

σ
(r)
i j = −λ̄pQp � H p δi j

+ (−1)p−1λp∂
p−2
k1k2··· kp−2

Hk1k2··· i j

+ p

2

(
Qk1k2··· iHk1k2··· j − Hk1k2··· iQk1k2··· j

)
. (65)

More details about this calculation are given in Appendix B.
As in nematic hydrodynamics, the second term on the right-
hand side of Eq. (65), originating from the correlational
derivative of the tensor order parameter, is antisymmetric by
construction and, therefore, cannot equate the ensemble aver-
age of a microscopic stress tensor, which is symmetric. This
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symmetry property is, however, unimportant as the stress ten-
sor enters in the momentum equation, Eq. (29b), only via its
divergence and it is always possible to construct a symmetric
stress tensor, i.e., σ ′, such that ∇ · σ ′ = ∇ · σ. This procedure
is reviewed, e.g., in Ref. [59] for the case of nematics.

The nonlinear flow alignment tensor N p, on the other
hand, does not yield relevant contributions to the reactive
stress. For even �p/2� values, i.e., for p = 4, 5, 8, 9 . . .,
N p is even under time reversal. It therefore describes an
irreversible exchange of momentum between orientational de-
grees of freedom and flow. For odd �p/2� values, i.e., for
p = 6, 7, 10, 11 . . ., the coupling is reversible, but, as non-
linear effects becomes relevant only when the shear rate is
comparable to the inverse relaxation time (i.e., ε̇τ ≈ 1), their
contribution to the total stress is negligible compared to the
viscous stresses within the hydrodynamic regime.

The viscous stress tensor σ (v), finally, can be expressed in
the form

σ (v) = η : ∇v, (66)

by virtue of Onsager’s reciprocal relations [60]. Here η is the
rank-4 viscosity tensor, which is symmetric with respect to the
first and second pair of indices, i.e., i1 ↔ i2 and i3 ↔ i4. In
the absence of parity symmetry-breaking effects, such as odd
viscosity [61] (which does not occur in passive liquid crystals,
but could in driven or active chiral fluids, e.g., Ref. [62]), it is
also symmetric with respect to the exchange {i1i2} ↔ {i3i4}.

Now, in the case of isotropic liquids, the viscosity tensor
takes the standard form (see, e.g., Ref. [60]):

η(i) = ζ1⊗2 + 2ηΔ2,2, (67)

with ζ > 0 and η > 0 the bulk and shear viscosity, re-
spectively. By contrast, in p-atics, the viscosity tensor is
augmented by an anisotropic component: i.e., η = η(i) + η(a),
with η(a) a p-fold symmetric function of the director n. Using
standard algebraic manipulations, it is possible to show that,
with exception for p = 1, 2, and 4, no combination of the
anisotropic tensor [[n⊗p]] and the isotropic tensors 1 and Δp,p

yields an anisotropic tensor that complies with the symmetry
requirements of η. Therefore, in these cases,

σ
(v)
i j = ζ tr(u) δi j + 2η[[ui j]]. (68)

To illustrate this concept, let us consider, for instance, the case
p = 3. An additional contribution to the viscosity tensor could
be obtained upon contracting [[n⊗3]] with itself, i.e., �3[[n⊗3]] ·
[[n⊗3]], with �3 a constant. By virtue of Eq. (28), however, this
term is proportional to the isotropic tensor Δ2,2, thus it affects
the viscosity tensor by merely renormalizing the magnitude
of the shear viscosity: η → η + �3/4. Analogous arguments
apply to other p values.

For p = 1 and 2, however, it is possible to construct
an anisotropic viscosity tensor η(a). In two dimensions, this
consists of three independent viscosity coefficients, which, to-
gether with ζ and η, make a set of five independent viscosities
(see, e.g., Ref. [63] for a general treatment that includes spatial
curvature). Analogously, for p = 4, one has

η(a) = �4 [[n⊗4 ]], (69)

with �4 ∼ |� (0)
p | a constant, whose magnitude is constraint

by the requirement Ṡ > 0, as demanded by the second law of

thermodynamics. To make this constraint explicit, we calcu-
late

Ṡ =
∫

d2r

T
{η| [[∇v ]]|2 + ζ [tr(u)]2 + �4∇v : [[n⊗4 ]] : ∇v}.

(70)
Then, switching again to the complex strain rate U, defined
in Eq. (50), and taking advantage of the fact that |[[∇v]]|2 =
2|U|2 and

∇v : [[n⊗4 ]] : ∇v = |U|2 cos (4θ − ArgU), (71)

allows one to express the tetratic entropy production as

Ṡ =
∫

d2r

T
{ζ [tr(u)]2 + [2η + �4 cos(4θ − 2ArgU)]|U|2}.

(72)
Finally, since either one of the two terms on the right-hand
side of this equation can vanish independently and −1 �
cos(4θ − ArgU) � 1, Ṡ > 0 requires

−2η � �4 � 2η. (73)

In summary, p-atic liquid crystals are expected to exhibit
isotropic viscous stresses, except for polars (i.e., p = 1), ne-
matics (i.e., p = 2), and tetratics (i.e., p = 4), for which the
orientational anisotropy affects viscous dissipation. Even in
these three cases, however, the dissipational anisotropy is
expected to become weaker at large length scales, owing to the
fact that the viscosity coefficients appearing in η(a), which in
turn are proportional to the order parameter (at least in mean
field theory), are renormalized by thermal fluctuations and,
therefore, vanish in the infinite system size limit.

Although a full RG analysis (which we have not attempted
here) is required to accurately assess the behavior of η(a)

across different length scales, there are at least two reasons to
expect the viscous anisotropy to be experimentally relevant.
First, since the scalar order parameter, hence the anisotropic
viscosities, decays as a power law in the presence of quasi-
long-ranged order [see Eq. (23)], even macroscopically large
samples could still exhibit appreciable anisotropy. For in-
stance, assuming �4/η ∼ |� (0)

p | ∼ (a/�)η4/2 (which is likely
an overestimation, but the most accurate estimate one can
make without explicitly accounting for thermal fluctuations),
taking η4 = 1/4 and assuming the ultraviolet cutoff to be a
molecular length scale, i.e., a ≈ 1 nm, yields �4/η ≈ 0.13 at
a length scale � = 1 cm. Thus even a centimeter-sized sample
would exhibit an appreciable 13% viscous anisotropy. This
percentage is significantly larger for colloidal tetratics, such as
those shown in Fig. 1(b), where a ≈ 1μ m and �4/η ≈ 0.32
for � = 1 cm. Second, as we will detail in Sec. V, subjecting
the system to a finite shear rate induces long-ranged order,
which would make the anisotropy of the viscous tensor unam-
biguously measurable.

IV. BACKFLOW EFFECTS

In the following, we set f = 0 in Eq. (29 b) and restrict
our attention exclusively to momentum-conserving systems.
Typical experimental realizations of this setting are free stand-
ing films, where no momentum is lost because of frictional
interactions with a substrate. Such a restriction can be readily
lifted by taking f = −ςv, with ς is a friction coefficient,
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resulting from the interaction with the substrate and such that
ς → 0 in nonfrictional systems. Even for finite ς values,
however, frictional dissipation becomes dominant at length
scales larger than �f = √

η/ς , hence the following predictions
are qualitatively expected to hold also in frictional systems, as
long as �f is of the same order of magnitude as the system
size.

As in other liquid crystals, the dynamics of the velocity
field in p-atics is characterized by two different timescales,
associated with propagation of linear and angular momentum,
i.e.,

τp = ρ�2

η
, τa = η�2

Kp
. (74)

In turn, multiplying these by the shear rate ε̇ yields two funda-
mental dimensionless numbers: the classic Reynolds number
Re = ε̇τp, proportional to the ratio of inertial to viscous
forces, and the Ericksen number Er = ε̇τa, proportional to the
ratio of viscous to elastic torques (see, e.g., Ref. [36]). As
such, the latter quantifies the preponderance of an externally
induced flow with respect to the internal backflow, namely, the
flow caused by spatial variations of p-atic order. Specifically,
for Er � 1 (Er � 1), backflow effects are negligible (dom-
inant). In a nematic film with thickness w, η/w ≈ 10 mPa s
and Kp/w ≈ 10 pN [36], taking � ≈ 1 mm and ε̇ ≈ 10 s−1

gives Er ≈ 104. Thus, at the macroscopic scale, it is generally
possible to neglect backflow, except in proximity to boundary
layers or topological defects, where the local orientation can
vary over submicron distances. At the microscopic scale, on
the other hand, backflow effects are more prominent and ther-
mal fluctuations can temporarily disrupt the condition Er � 1,
even if this is fulfilled at the scale of the system size.

In this section, we demonstrate that, in the Stokesian limit,
that is when inertial effects are negligible, and for Er ≈ 1,
backflow effectively enhances rotational diffusion and can be
accounted for by replacing

D → Deff = Kp

(
1

γp
+ 1

4η

)
, (75)

in Eqs. (58) and (60). To prove this statement we observe that,
in the Stokesian limit, Eq. (29 b) reduces to

η∇2v + ∇ · (σ (s) + σ (r) ) = 0, (76a)

∇ · v = 0. (76b)

Under the assumption of homogeneous scalar order param-
eter, this can be cast in the classic form given in Ref. [17],
namely,

σ (s) + σ (r) = −P1 + Kp

2
ε∇2θ − Kp∇θ ⊗ ∇θ, (77)

where ε is again the antisymmetric tensor defined in Sec. II B.
Now, a simple solution of Eqs. (76) can be obtained by decom-
posing the velocity field in an externally driven component,
v(e), and a backflow component, v(b), so that

v = v(e) + v(b). (78)

For simplicity, here we take v(e) = 0 and assume the flow is
solely due to backflow effects. This hypothesis will be lifted in
the following section. Then, substituting Eq. (77) in Eq. (76)

and approximating all the fields at the linear order in ∇θ ,
readily yields

v(b) = −Kp

2η
ε · ∇θ + O(|∇θ |2), (79a)

P = P0 + O(|∇θ |2), (79b)

with P0 a uniform pressure. Thus, away from the bound-
ary, spatial variations in the average orientation θ drive a
transverse backflow, whose strain rate and vorticity can be
approximated from Eqs. (79) as

uxx = −uyy ≈ −Kp

2η
∂2

xyθ, (80a)

uxy = uyx ≈ Kp

4η

(
∂2

x − ∂2
y

)
θ, (80b)

ωxy = −ωyx ≈ Kp

4η
∇2θ. (80c)

Finally, using Eqs. (80) in Eq. (58) and truncating the latter
equation at the linear order in ∇θ gives

∂tθ = Deff∇2θ − |Hp| sin(pθ − ArgHp), (81)

with Deff the effective rotational diffusion coefficient defined
in Eq. (75). Analogously, the flow alignment field is given by

Hp = iλp

η

Kp

p
∣∣� (0)

p

∣∣ ∂ pθ. (82)

Thus, in the absence of an externally driven flow and strong
distortion of the local orientation, backflow has the effect of
speeding up the relaxational dynamics of the p-atic director by
increasing the effective rotational diffusion coefficient, but ul-
timately leads to a homogeneous and stationary configuration,
where θ = const and v(b) = 0, unless the boundary conditions
demand otherwise.

To conclude, we stress that the above derivation is rooted in
three important simplifying assumptions. First, inertial effects
are negligible and the velocity field can be found within the
Stokesian limit. Second, viscous and elastic stresses are com-
parable in magnitude. Third, the p-atic director gently varies
across the system. In terms of the previously defined Reynolds
(Re) and Ericksen (Er) numbers, the first two assumptions
imply Re � 1 and Er ≈ 1, or, equivalently,

Re

Er
= ρKp

η2
� 1. (83)

In most thermotropic liquid crystals, Re/Er ≈ 10−4 at room
temperature and Eq. (83) is well satisfied [36,64]. Further-
more, in colloidal p-atics (see Fig. 1), as one cools the
sample down towards the liquid-solid phase transition, both
the shear viscosity η and the orientational stiffness Kp are
predicted to diverge like ξ 2

p [17], where ξp ∼ exp(bt−νp ) is
the correlation length, with b a constant of order one, t =
(T − Tm )/Tm, with Tm the melting temperature, and νp =
1/2 for all p values [65–67] expect p = 6, for which ν6 ≈
0.36963 [1,2,5]. Thus Re/Er → 0 as the liquid-solid phase
transition is approached from above. The third assump-
tion, however, requires |∇θ | ≈ d−1, with d the system size.
Since |v| = Kp/(2η)|∇θ | and, away from topological defects,
Er = ηvd/Kp, this assumption translates once again into
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the requirement Er ≈ 1, thus it is already accounted for in
Eq. (83).

V. LONG-RANGE ORDER IN P-ATICS UNDER SHEAR

As we discussed in Sec. II B, two-dimensional p-atics do
not, in fact, exhibit long-ranged orientational order in equilib-
rium. Rather, orientational order is quasi-long-ranged [1,2],
that is, the orientational correlation function, Eq. (20), decays
to zero as a power law as the spatial separation |r| → ∞, with
a nonuniversal exponent, as shown explicitly in Eqs. (20) and
(21). This implies a vanishing order parameter as well. The
latter can be calculated by taking the long-distance limit of
the correlation function:

lim
|r|→∞

〈ψ∗
p (r)ψp(0)〉 = 〈ψ∗

p (r)〉〈ψp(0)〉 = |�p|2. (84)

Thus, in the thermodynamic limit, the p-atic order parameter
vanishes as demanded by Eq. (23). At equilibrium, this classic
result can be recovered starting from the O(2) Hamiltonian

H = 1

2
Kp

∫
d2r |∇ϑ |2, (85)

from which one can calculate

〈ψ∗
p (r)ψp(0)〉 = e−p2g(r), (86)

where g(r) is the connected correlation function of the micro-
scopic orientation ϑ :

g(r) = 1
2 〈[ϑ (r) − ϑ (0)]2〉. (87)

Applying the equipartition theorem to Eq. (85), one can read-
ily show that

g(r) = kBT

Kp

∫
0<|q|<�

d2q

(2π )2

1 − eiq·r

q2
, (88)

where � = 2π/a. This leads to the asymptotic result

g(r) ≈ kBT

2πKp
log

|r|
a
, |r| � a, (89)

from which one readily obtains Eq. (20), with the exponent ηp

given by Eq. (21) (see, e.g., Ref. [52]).
In this section, we show that an externally imposed uni-

form shear induces long-ranged order. Intuitively, this can be
understood by observing that hydrodynamic flow introduces a
timescale τs = 1/ε̇, with ε̇ the typical shear rate of the flow,
as well as the length scale

�s =
√
Deff

ε̇
. (90)

The latter, hereafter referred to as the shear length scale,
is the distance at which elastic and hydrodynamic torques
balance each other. As a consequence, fluctuations are highly
anisotropic, but are suppressed at length scales larger than �s,
with respect to their equilibrium counterpart. Thus, it is the
shear length �s, rather than the system size, that provides the
long wavelength (i.e., infrared) cutoff on the Goldstone modes
and one can expect

|�p| ∼
(

a

�s

)ηp/2

∼ (ε̇τ ) ηp/4, (91)

where τ = a2/Deff is the characteristic relaxation time at the
cutoff length scale. Furthermore, since ηp < 1/4, Eq. (91)
implies that even a very small shear rate can induce large, i.e.,
O(1), order parameter values. This upper bound also entails
important physical consequences for flow alignment, as we
will see in Sec. VI.

The mechanism illustrated above is analogous to that de-
scribed by Onuki and Kawasaki in the context of generic
second order phase transitions [68] and latter invoked to ac-
count for the solid-like behavior of smectic layers [69]. In the
following, we will demonstrate through a detailed calculation
that the same mechanism results in the suppression of Gold-
stone modes in two-dimensional liquid crystals under shear,
thereby promoting quasi-long-ranged into long-ranged order.

A. Linear theory

In this subsection we consider an incompressible p-atic
liquid crystal subject to thermal fluctuations and to an exter-
nally imposed shear flow. This can be achieved by augmenting
hydrodynamic equations for p-atic phase ϑ and vorticity ω =
2ωxy = ∂xvy − ∂yvx with additional random fields (see e.g.
Ref. [70]). At the linear order in ϑ , this gives

ρ(∂t + v · ∇)ω = ∇⊥ × ∇ · σ + ξ (ω), (92a)

(∂t + v · ∇)ϑ = D∇2θ + ω

2
+ ξ (ϑ ). (92b)

with ∇⊥ = ez · ∇. The random fields ξ (ω) = ξ (ω)(r, t ) and
ξ (ϑ ) = ξ (ϑ )(r, t ) have zero mean, are Gaussianly distributed
and their correlation functions are consistent with the
fluctuation-dissipation theorem, so that

〈ξ (α)(r, t )ξ (β )(r′, t ′)〉

= 2kBT

(
1

γp
δαϑδβϑ + ηδαωδβω∇4

)
δ(r − r′)δ(t − t ′).

(93)

To make progress, we decompose the velocity field into an
average and a fluctuating component:

v = 〈v〉 + δv, (94)

so that 〈δv〉 = 0. To compute the average velocity, we con-
sider a simple shear flow generated by placing the sample
between parallel plates and sliding them over each other at
constant relative velocity. Taking the plates parallel to the x
direction, yields

〈v〉 = ε̇yex, (95)

with ε̇ a constant shear-rate. Furthermore, we assume the
system in the regime discussed in Sec. IV and subject to the
constraint expressed by Eq. (83), so that the backflow effects
can be incorporated directly into the rotational diffusion coef-
ficient, Eq. (75). Analogously, as we detail in Appendix C, the
random field ξ (ω) results in a renormalization of the orienta-
tional noise ξ (ϑ ), so that Eqs. (92) can be reduced, at the linear
order in all the fluctuating fields, to a single stochastic partial
different equation:

∂tϑ + ε̇y ∂xϑ = Deff∇2ϑ − ε̇

2
+ ξ, (96)

024701-11



LUCA GIOMI, JOHN TONER, AND NILADRI SARKAR PHYSICAL REVIEW E 106, 024701 (2022)

where we have used the fact that the vorticity arising from
the externally imposed field Eq. (95) is given by ω = −ε̇. The
effective rotational diffusion coefficient is given by Eq. (75),
whereas ξ = ξ (r, t ) is the effective orientational noise field,
whose correlation function is given by

〈ξ (r, t )ξ (r′, t ′)〉 = 2kBT

γeff
δ(r − r′)δ(t − t ′), (97)

with γeff = Kp/Deff . In Appendix C we formally solve
Eq. (96) to express the microscopic orientation as a linear
functional of the noise field. We can then autocorrelate this
expression with itself and use Eq. (97) to compute

g(r) = lim
t→∞

∫
0<|q|<�

d2q

(2π )2
(1 − eiq·r)〈|ϑ̂ (q, t )|2〉, (98)

where 〈|ϑ̂ (q, t )|2〉 is an orientational structure factor defined
from the relation

〈ϑ̂ (q, t )ϑ̂ (q′, t )〉 = (2π )2〈|ϑ̂ (q, t )|2〉δ(q + q′)δ(t − t ′),
(99)

and ϑ̂ = ϑ̂ (q, t ) is the spatially Fourier transformed orienta-
tion field. This gives

g(r) = kBT

2πKp

∫ ∞

0
dτ

e−G(τ,φ)( a
�s )2 − e−G(τ,φ)( |r|

�s )2

τ

√
4 + 1

3τ
3

, (100)

where we have defined

G(τ, φ) = 1 − 1
2τ sin 2φ + 1

3τ
2 sin2 φ

2τ
(
4 + 1

3τ
2
) . (101)

Figure 3(a) (inset) shows a plot of the connected correlation
function versus |r|/a for various a/�s values. For a/�s → 0,
corresponding to ε̇ → 0, this displays the characteristic log-
arithmic growth of p-atics at equilibrium. By contrast, for
a/�s > 0 the connected correlation function does not grow
without bound, but rather plateaus at large distances. Recall-
ing Eq. (86), this implies that 〈ψ∗

p (0)ψp(r)〉 converges to a
finite value [Fig. 3(a)], indicating that a shear flow of arbitrary
finite shear rate renders the orientational order of p-atic phases
long-ranged. The corresponding order parameter |�p|, given
by Eq. (84), can be calculated form the asymptotic value of
the p-atic correlation function [Fig. 3(b), inset] and is plotted
in Fig. 3(b) versus a/�s.

To make this result more explicit, one can approximate the
connected correlation function, Eq. (100), at short and long
distances. The result is

g(r) ≈ kBT

2πKp

{
log |r|

a |r| � �s,

G0 − 1
2 Ei
(− a2

8�2
s

) |r| � �s,
(102)

where Ei is the exponential integral and G0 =
1/2 arcsinh2

√
3 ≈ 0.9779 (see Appendix C for details).

Thus, as already evident from the Fig. 3(a), the short-distance
behavior of the correlation function is unaffected by the shear
flow, as a consequence of the fact that, well below the shear
length scale �s, the fluctuations of the p-atic orientation ϑ

are mainly governed by the competition between thermal and
elastic torques. By contrast, at distances much larger than
�s, elastic torques are outweighed by hydrodynamic torques,
resulting in the emergence of global alignment. Using
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FIG. 3. (a) Two-point p-atic correlation function, as defined in
Eq. (20), versus distance for various shear rates expressed in terms
of the dimensionless ratio a/�s, with a a short-distance cutoff and
�s the shear length scale defined in Eq. (90) for φ = 0. Inset: the
connected correlation function g = g(r), Eq. (100), versus distance.
(b) p-atic order parameter |�p| versus shear rate, expressed in terms
of a/�s. Inset: the asymptotic value g(∞) = lim|r|→∞ g(r).

Eqs. (84) and (102) and the expansion of the exponential
integral given in Appendix C, we recover the expression for
the order parameter given in Eq. (91). The latter, in turn,
vanishes for ε̇ → 0, when �s → ∞, thereby recovering the
equilibrium absence of long-ranged order.

The inherent anisotropy of the shear flow, Eq. (95), has the
further effect of rendering the orientational correlation of the
p-atic anisotropic, as can be seen from the φ− dependence in
Eq. (100) and the contour plots shown in Fig. 4. Nevertheless,
as it is clear from Eq. (102), this effect disappears at both small
and large scales.

In summary, to leading order in the externally imposed
shear rate ε̇, the effect of such shear is to induce long-ranged
order, as manifested by a nonzero value of |�p| given by
Eq. (91). Although the demonstration presented here is strictly
valid only in the subset of parameter space described by
Eq. (83), where backflow effects can be accounted for via a
simple redefinition of the rotational diffusion coefficient, we
expect this result to carry over to other regimes, provided the
longest relaxation time in the dynamics of ϑ , i.e., τmax, is
larger than the timescale of the externally applied shear flow,
i.e., τmax > 1/ε̇. In these circumstances, and analogously to
the regime discussed here, the orientational fluctuations are
expected to be suppressed by the flow at length scales larger
than �max = √

τmaxD. Finally, Eq. (96), implies that the phase
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FIG. 4. Density plot of the connected correlation function, as de-
fined in Eq. (87) as a function of position for (a) a/�s = 1, (b) a/�s =
1/3, (c) a/�s = 1/10, and (d) a/�s = 0.

θ of the complex order parameter �p, though coherent in
space due to the suppression of fluctuations by the imposed
shear, is not fixed in time, but rather rotates at a constant
rate −ε̇/2. Such a state is analogous to the “tumbling” state
found in nematics for λ2 < 1 [36]. In Sec. VI we will further
elaborate on this tumbling state and its onset in confined sys-
tems and we will show that, as a consequence of the nonlinear
couplings between orientation and flow, Eq. (44), it is possible
to obtain a flow aligned state, but only at sufficiently high
shear rates ε̇.

B. Nonlinear theory

In this subsection, we perform a simple RG analysis to as-
sess the validity of the preceding linear theory, which ignored
nonlinear flow-alignment effects and we will see that there is a
surprising connection between this problem and the dynamics
of the roughening transition [71].

For odd p �= 1 values, Hp = 0, by virtue of the fact that ε̇ is
uniform throughout the system and the nonlinear terms cancel
identically. For even p values, on the other hand, including
nonlinearities yields the following hydrodynamic equation for
the fluctuating field ϑ :

∂tϑ + ε̇y ∂xϑ = Deff∇2ϑ − ε̇

2
− h0 sin p

(
ϑ − π

4

)
+ ξ,

(103)

where h0 is the “bare” amplitude of the flow alignment field
Hp and is given by

h0 =
(
ε̇

2

)p/2

⎧⎪⎨
⎪⎩

λ2∣∣� (0)
p

∣∣ p = 2,

2νp

p
∣∣� (0)

p

∣∣ p = 4, 6, 8 . . . .
(104)

Next, performing the transformation ϑ → ϑ + π/4, and ig-
noring the terms resulting from convection and vorticity, i.e.,
ε̇y ∂xϑ and ε̇/2, which do not affect the dynamics of the local
orientation at scales � � �s, we can rewrite Eq. (103) as

∂tϑ = Deff∇2ϑ − h0 sin pϑ + ξ . (105)

This equation is simple relaxational model for a sine-Gordon
theory and, following Ref. [71], can be analyzed using dynam-
ical RG to obtain the following equations describing how the
parameters h = h(�), Deff = Deff (�), and Kp = Kp(�), change
at the length scale � > a. This gives

dh

dl
= h

[
2 − ηp

2
+ O(hτ )

]
, (106a)

dDeff

dl
= O(h2τ 2), (106b)

dKp

dl
= O(h2τ 2), (106c)

with l = log(�/a) and τ as in Eq. (91). From Eqs. (106b,c),
we see that, as long as

hτ � 1, (107)

both Deff and Kp are not renormalized by fluctuations and τ

equates the timescale of the rotational dynamics at the length
scale of the ultraviolet cutoff a. Thus, the right-hand side of
Eq. (106a) is constant and the equation can be immediately
integrated to give

h(�) = h0

(
�

a

)2−ηp/2

. (108)

Now, Eq. (106) holds for length scales � < �s. For � > �s,
however, the terms resulting from convection and vorticity
in Eq. (103) become important and, as shown earlier, cut off
thermal fluctuations at the large scale. Thus, fluctuations no
longer renormalize the material parameters at any length scale
larger than �s and the linear theory is again valid, unless the
coupling h itself has by then become so large as to violate
Eq. (107). To exclude this possibility one can compute the
renormalized coupling at the crossover scale. Using Eqs. (90)
and (108) gives

hτ ∼ ε̇ p/2−1+ηp/4, (109)

which vanishes for small ε̇ values, provided

p > 2 − ηp

2
. (110)

Since ηp > 0, this condition is obviously satisfied, meaning
that the shear flow term is irrelevant at small shear rates,
for all p � 2. The same argument applies to the case p = 1,
which, as we explained in Sec. III C, is formally identical to
p = 2. Using again Eq. (108), the condition Eq. (107) requires
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FIG. 5. Examples of high Ericksen number p-atic flow in a channel (a) and a Taylor-Couette cell (b), when ξm → 0 and the scalar order
parameter can be assumed uniform throughout the system, i.e., |�p| = |� (0)

p |. (a) Numerical solution of Eq. (114) for triatics (p = 3), tetratics
(p = 4), pentatics (p = 5), and hexatics (p = 6) with boundary conditions θ0 = �θ = 0, with d the channel thickness. The left-hand side of
all plots shows the configuration of the p-atic director, represented by p-headed stars, superimposed to a heat map of the flow speed. The solid
lines denote the channel walls, whereas the dotted lines mark the position of the channel inlet/outlet. The left-hand side of the plots shows
the configuration of the p-atic director in terms of the angle θ0 − θ . (b) Numerical solutions of Eq. (134) with boundary conditions α0 = π/2
and �α = 0. In all plots the parameter values are τp/τa = 1, λp/d p−2 = 1.5 and νp/(d p mod 2τ �p/2�−1

p ) = 2.0. For the plots in panel (b) we set
R1/d = 1, R2/d = 2 and �1 = 0.

then

hτ ∼ ε̇ η1/4, (111)

which again vanishes for small shear rates.

VI. FLOW ALIGNMENT IN CHANNEL AND
TAYLOR-COUETTE FLOWS

In this section we demonstrate that the nonlinear couplings
between p-atic order and flow, embodied by the field Hp in
Eq. (58), although they cannot lead to flow alignment at small
shear rates, could potentially do so at high shear rates. This
possibility was missed by previous hydrodynamic theories
of p-atics, because of the continuous, i.e., O(2), rotational
symmetry artificially imposed in those theories.

Specifically, we will discuss two classic examples of liq-
uid crystals hydrodynamics: a generic p-atic liquid crystal
confined in an infinitely long channel whose upper wall is
dragged at constant speed [Sec. VI A and Fig. 5(a)] as well
as a two-dimensional analog of a Taylor-Couette cell, con-

sisting of a annulus delimited by two counter-rotating walls
[Sec. VI B and Fig. 5(b)]. In both cases, we assume the p-atic
fluid incompressible (i.e., ∇ · v = 0) and strongly anchored to
the lateral walls.

A. Channel flow

Let us consider a p-atic liquid crystal confined within a
two-dimensional channel of infinite length along the x direc-
tion and finite width d . The upper wall is dragged at speed v0,
in such a way that Er = ηv0d/Kp � 1 and backflow effects
can be ignored. The velocity field throughout the sample is
then given by Eq. (95), with ε̇ = v0/d a constant shear rate.
A stationary configuration of the average orientation θ is then
found by solving a simplified version of Eq. (58) of the form

D∂2
y θ − ε̇

2
− |Hp| sin(pθ − ArgHp) = 0, (112)

with θ = θ (y) by virtue of the translational invariance along
the x direction imposed by the channel geometry, with
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boundary conditions

θ (0) = θ0, θ (d ) = θ0 +�θ, (113)

with �θ a constant angle. Before considering the case of
general p, we review the phenomenon of flow alignment in
nematics. In this case, Eq. (112) reduces to

D∂2
y θ − ε̇

2

(
1 − λ2∣∣� (0)

2

∣∣ cos 2θ

)
= 0. (114)

Thus, away from the channel walls, the nematic director ori-
ents at an angle

θ = 1

2
arccos

(∣∣� (0)
2

∣∣
λ2

)
, (115)

also known as Leslie’s angle, with respect to the flow direction
[35]. The latter result applies exclusively to so called flow-
aligning nematics, for which λ2/|� (0)

2 | � 1. Nematic liquid
crystals with λ2/|� (0)

2 | < 1 are known as flow-tumbling and,
when subject to shear, form more complex textures featuring
multiple stationary or time-dependent rotations of the ne-
matic director. Near the boundaries, the local orientation θ

inevitably deviates from Leslie’s angle to match the anchor-
ing direction, as required by Eq. (113), thereby creating a
boundary layer whose width is approximatively given by �s

in Eq. (90).
Similarly, for p = 4, 6, 8 . . ., Eq. (114) reduces to

D∂2
y θ − ε̇

2

[
1 +

(
ε̇

ε̇c

)p/2−1

sin p

(
θ − π

4

)]
= 0, (116)

with ε̇c a constant shear rate given by

ε̇c = 2

(
p
∣∣� (0)

p

∣∣
2νp

) 1
p/2−1

. (117)

Thus, unlike in nematics, the fluid can be either flow-
tumbling, for ε̇ < ε̇c, or flow-aligning, for ε̇ > ε̇c. In the latter
case, the director aligns at an angle that progressively ap-
proaches the asymptotic value

θp =
(
π

4
+ kπ

p

)
mod

2π

p
, k ∈ Z, (118)

as ε̇ is increased. The integer k depends on the anchoring
of the p-atic director and can be selected in such a way to
minimize the energetic cost of the boundary layer in proximity
of the channel walls. Taking, for instance, θ0 = �θ = 0, this
yields θ4 = ±π/4, θ6 = ±π/12, θ8 = ±π/8, etc., with the
sign given by −signε̇.

Figure 5(a) shows the configurations obtained from a nu-
merical solution of Eq. (112) for 3 � p � 6 and different two
different Ericsken number values, with boundary condition
θ0 = �θ = 0. In the case of channel flow, flow alignment
is prominent in both tetratics (p = 4) and hexatics (p = 6),
where the director orientation θ is uniform in the bulk of the
channel and abruptly rotates in proximity of the boundary to
comply with the anchoring conditions. The analysis presented
here assumes the parameter νp constant, but, as anticipated in
Sec. III B [see Eq. (52) in particular], both λp and νp could,
in principle, depend upon the shear rate ε̇, as no symmetry
prevents this. Whereas at small shear rates these higher-order

terms would be negligible, the same argument could not be
applied in the present context, as the flow alignment phe-
nomenon entailed in Eq. (116), holds exclusively at large
shear rates. In fact, in the absence of microscopic arguments,
one could expect these higher-order terms to become com-
parable to those in Eq. (116) precisely at ε̇ > ε̇c. Hence, in
general, we expect both ε̇c and the asymptotic flow alignment
angle θp to be nonuniversal. In spite of these caveats, the
truncated model presented here demonstrates the existence of
a region of parameter space, corresponding to ε̇ ≈ ε̇c, where
the terms proportional to ε̇ p/2 dominates over all possible
higher-order terms and flow alignment occurs for arbitrary
even p values subject to channel confinement. In practice,
the occurrence of flow alignment in experiments on driven
p-atic liquid crystals ultimately depends on the specific ma-
terial properties of the system, hence on the magnitude of the
higher-order terms. This situation, however, is no worse than
in nematics, where, consistently with Eq. (115), the occur-
rence of flow alignment crucially relies on the specific value
of the parameter λ2.

For p = 3, 5, 7 . . ., on the other hand, Hp = 0 because the
uniform shear rate and Eq. (112) further simplifies to

∂2
y θ = 1

2�s
, (119)

whose solution with the boundary conditions given by
Eq. (113) is

θ (y) = θ0 +�θ
y

d
+ y(y − d )

4�2
s

. (120)

Thus, for odd p �= 1, the director rotates in such a way to
accommodate the vorticity of the imposed shear flow, but
without aligning at a specific angle, as can be seen in Fig. 5(a)
in the case of triatics (p = 3) and pentatics (p = 5). As in
nematic liquid crystals, however, the stationary configuration
described by Eq. (120) is unstable to tumbling for finite values
of the length scale ξm defined in Eq. (57). In two-dimensional
nematics, such an instability takes place via the formation
of “walls,” that is, singular lines located in proximity of the
boundaries where the director is highly distorted and the scalar
order parameter vanishes [72]. The periodic appearance of
walls allows the director in the bulk to temporarily disengage
from the boundary and precess at roughly constant angular
velocity ωxy = −ε̇/2. Figure 6, displays the typical tumbling
dynamics obtained from a numerical integration of Eqs. (29b)
and (49) in the case p = 3.

To gain further insight into this instability, we assume the
length scale ξm, defined in Eq. (57), to be finite and split
Eq. (49) into two coupled partial differential equations for the
magnitude |�p| and the phase θ of the complex order param-
eter �p. Using Eq. (34), this gives, after standard algebraic
manipulations

D−1∂t |�p| = ∇2|�p| + |�p|
ξ 2

m

(
1 − |�p|2∣∣� (0)

p

∣∣2 − p2ξ 2
m|∇θ |2

)
,

(121a)

D−1|�p|∂tθ = |�p|
(

∇2θ − 1

2�2
s

)
+ 2∇|�p| · ∇θ,

(121b)
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FIG. 6. Examples of flow tumbling in triatic liquid crystals under
channel confinment. (a)–(d) Configurations of the triatic director
along one tumbling period obtained from a numerical integration of
Eqs. (29b) and (49), slightly above the instability. As in Fig. 5, the
solid horizontal lines denote the channel walls, whereas the dotted
vertical lines mark the position of the channel inlet and outlet. The ar-
rows indicate the locations of the “walls,” where the order parameter
periodically vanishes, thus allowing the director in the bulk to tem-
porarily disengage from the boundary. (e) Time-plot of the real (blue)
and imaginary (red) parts of the complex order parameter �3 at the
center of the channel, i.e., x = 0 and y = d/2. Time is normalized
with respect to the typical timescale associated with the relaxation
of the triatic director at the length scale d , i.e., τ = d2/D. The time
points corresponding to panels (a)–(d) are marked in the figure. In
all panels the parameter values are d/ξm = 50, τp/τa = 1, γp/η = 1,
λ3/d = 0.2, |� (0)

3 | = 1 and the Ericksen number is Er = 35, thus
slightly above the critical Ericksen number Erc = 100/3.

where we used again Eq. (95) to express the velocity v and its
derivatives in terms of the shear rate ε̇. The last three terms
on the right-hand side of Eq. (121a) set the magnitude of the
scalar order parameter |�p|, which, in turn, is positive by con-
struction and vanishes in the isotropic phase: i.e., |�p| � 0. At
low shear rates, the latter condition can be fulfilled throughout
the entire channel and the solution of Eqs. (121) is given, at
the quadratic order in d/�s, by |�p| = |� (0)

p | and Eq. (120). As
the shear rate is increased, the distortion of the p-atic director
is initially compensated by a decrease of the scalar order
parameter, until, for high shear rates, this becomes virtually
negative, thereby violating the positivity requirement. As the
p-atic director is more highly distorted near the boundaries of
the channel, the critical shear rate associated with the tum-
bling instability can be found by demanding

|�p|2 = ∣∣� (0)
p

∣∣2(1 − p2ξ 2
m|∇θ |2) � 0, (122)

at y = 0 and y = d . Next, assuming the anchoring conditions
to be the same on both boundaries (i.e., �θ = 0) and using
Eq. (120) to express |∇θ |y=0, d = d/(2�2

s ), solving Eq. (122)
readily yields the following stability criterion for the static
configuration:

ξmd

�2
s

� 2

p
, (123)

from which one finds the critical Ericksen number associated
with the tumbling transition in the form

Erc = (η/γp)(d/ξm )

p/2
, (124)

in perfect agreement with our numerical solutions of
Eqs. (29b) and (49), which additionally include backflow ef-
fects (Fig. 6).

Some comments are in order. Equations (123) and (124)
hold exclusively for odd p values, whereas for even p values
flow alignment prevents the tumbling instability from taking
place. The critical Ericksen number is a monotonically de-
creasing function of p and vanishes in the limit p → ∞, when
isotropy is restored at the microscopic scale. Furthermore,
since η ≈ γp in most liquid crystals [36] and ξm has the same
order of magnitude of the size of the microscopic building
blocks, we expect that the tumbling instability discussed here
is accessible in experiments on colloidal p-atics (see e.g.,
Fig. 1). Finally, this instability shares some resemblances
with the Silsbee criterion in superconducting wires (see, e.g.,
Ref. [73]).

B. Taylor-Couette flow

As a second example of flow alignment in p-atics, we
consider the two-dimensional analog of Taylor-Couette flow,
that is, the flow induced inside an annulus delimited by two
concentric circles of radii R1 and R2 = R1 + d , with d the
width of the annulus, rotating at angular velocities �1 and �2,
respectively. At large shear rate, where backflow effects are
negligible, the velocity field becomes identical to that of an
isotropic fluid, given by [74]

v =
(
αr + β

r

)
eφ, (125)

where r =
√

x2 + y2 is the distance from the center of
the annulus, eφ = − sin φ ex + cosφ er and er = cosφ ex +
sin φ ey, with φ = arctan y/x, orthonormal basis vectors in
the longitudinal and transverse direction, respectively, and we
have set

α = R2
2�2 − R2

1�1

R2
2 − R2

1

, β = R2
1R2

2(�1 −�2)

R2
2 − R2

1

, (126)

from which the components of the strain rate and vorticity
tensor can be readily computed in the form

urr = uφφ = 0, (127a)

urφ = uφr = − β

r2
, (127b)

ωrφ = −ωφr = α. (127c)
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Thus, unlike in the case of simple shear flow discussed in
Sec. VI A, the strain rate across the Taylor-Couette cell and
both the linear and nonlinear terms in the flow alignment field
Hp do not vanish identically. The typical strain rate of the flow
is given by

ε̇ = �2R2 −�1R1

R2 − R1
. (128)

Equation (58) can be expressed in polar coordinates by setting
ϕ = θ − φ. Thus, using Eqs. (125) and (127) and assuming
∂φϕ = 0 by virtue of the rotational symmetry of the annulus,
yields the following equation for a stationary configuration of
the average orientation ϕ:

D
(
∂2

r ϕ + 1

r
∂rϕ

)
− β

r2
− |Hp| sin (pϕ − ArgHp) = 0,

(129)
where the flow alignment field now takes the form

Hp = χ

rp
, (130)

with χ a complex number given by

χ = 2

p
∣∣� (0)

p

∣∣ {−iλpβ(−
√

2)p−2(p − 1)!

+ νpβ
�p/2�[−

√
2 (p − 1)]p mod 2e−i�p/2� π

2
}
. (131)

Now, in nematics, χ = −iλ2β/|� (0)
p | and Eq. (129) yields

again Leslie’s angle in the rotating frame {er, eφ}:

ϕ = 1

2
arccos

(
−
∣∣� (0)

p

∣∣
λ2

)
. (132)

By contrast, for any p � 3 value, the r-dependence of the
right-hand side of Eq. (129) does not cancel. In this case,
defining

Rs =
∣∣∣∣χβ
∣∣∣∣

1
p−2

, (133)

the stationary configuration of the local orientation ϕ is found
to obey the ordinary differential equation

D
(
∂2

r ϕ + 1

r
∂rϕ

)

− β

r2

[
1 +

(Rs

r

)p−2

sin (pϕ − ArgHp)

]
= 0, (134)

with and boundary conditions

ϕ(R1) = ϕ0, ϕ(R2) = ϕ0 +�ϕ. (135)

In the absence of flow alignment effects, Rs = 0 and the
solution of Eq. (134) is given by

ϕ = ϕ0 + �ϕ

log R2/R1
log

r

R1
+ β

2D log

(
r

R1

)
log

(
r

R2

)
,

(136)
and the p-atic director tumbles across the Taylor-Couette cells
depending on the ratio β/D ∼ (R1/�s)2, with �s the shear
length scale given in Eq. (90).

Conversely, for nonvanishing λp and νp values, and with
only exception for p = 3, increasing the shear rate ε̇ results
in an increase of the length scale Rs until, for Rs � r, flow
alignment effects becomes dominant and the p-atic director
uniformly aligns at an angle

ϕp =
(

lim
ε̇→∞

ArgHp

p
+ kπ

p

)
mod

2π

p
, k ∈ Z, (137)

in the bulk of the Taylor-Coutte cell. The integer k depends
again on the anchoring conditions and is chosen in such a way
to minimize the energetic cost of the boundary layer near the
edges. As in the large ε̇ limit, the value of ArgHp converges
towards either 0, ±π/2 and ±π , depending on the sign of the
constants λp, νp and β. Thus, the asymptotic bulk orientation
ϕp is nonuniversal and, unlike in the case of simple shear flow
discussed in Sec. VI A, can be used to infer information about
the material parameters.

Figure 5(b) shows some examples of Taylor-Couette flow
in p-atics with 3 � p � 6, obtained from a numerical inte-
gration of Eq. (134) with boundary conditions ϕ0 = π/2 and
�ϕ = 0 and the same Er values already considered in the case
of channel flow. Unlike the latter, here the spatial dependence
of the strain rate urφ and the vorticity ωrφ render the flow
alignment field Hp nonvanishing regardless of the specific p
value and the director is always found to flow align at large
shear rates.

For p = 3, χ = 4i
√

2λ3β/(3|� (0)
3 |) and the length scale

Rs does not diverge for large shear rates. In this case, the local
orientation ϕ does not approach the asymptotic value given by
Eq. (137), but varies along the radial direction similarly to the
statically tumbling configuration described by Eq. (120). Yet,
for large shear rate, thus large β values, the last two terms
on the left-hand side of Eq. (134), expressing the hydrody-
namic torque experienced by the p-atic director, overweight
the restoring torques originating from the entropic elasticity
of the triatic phase. Away from the edges of the annulus, the

0

100

1 1.2 1.4 21.6 1.8

Er

0

FIG. 7. Numerical solution of Eq. (134) with boundary condi-
tions ϕ0 = π/2 and �ϕ = 0 for ten different values of the Ericsken
number. Unlike for p > 3, the bulk orientation of the triatic director
in a Taylor-Couette flow do not flow align at angle ϕp given in
Eq. (137), but, for large Er values, it approaches the linearly decreas-
ing function given in Eq. (139) and whose slope depends uniquely
on the triatic flow alignment parameter λ3. The parameter values are
τp/τa = 1, λ3/d = 1.5, R1/d = 1, R2/d = 2, and �1 = 0.
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configuration of the position-dependent orientation ϕ can be
found from the solution of the trigonometric equation

cos 3ϕ = − r

Rs
. (138)

Since R1 � r � R2, this equation admits a real-valued solu-
tion across the entire annulus only if Rs > R2. In particular,
when Rs � R2, expanding the left-hand side of Eq. (138)
about ϕ = π/6 yields

ϕ ≈ π

6
− r

3Rs
, (139)

in good agreement with the numerical solution of Eq. (134) at
high shear rates (Fig. 7). Since Rs is a simple linear function
of triatic flow alignment parameter λ3, i.e., Rs = (4

√
2/3)λ3,

Eq. (139) provides a potentially simple and efficient strategy
to measure λ3 in experiments on colloidal triatics, like those
shown in Fig. 1(a).

VII. CONCLUSIONS

In this article we developed a comprehensive hydrody-
namic theory of p-atic liquid crystals in two dimensions.
Previous hydrodynamic theories of p-atics [17,18] have O(2)
rotational symmetry [17,18], which is higher than the actual
p-fold symmetry of p-atic phases. In this paper, we have gone
beyond this picture, using a phenomenological approach in-
volving the p-atic tensor order parameter Qp, whose algebraic
structure directly embodies the discrete rotational symmetry
of p-atics. We identified additional couplings between p-atic
order and flow which break the O(2) rotational symmetry
of earlier models down to the p-fold rotational symmetry
of p-atics. These are linear and nonlinear functions of the
strain-rate and p-atic tensor order parameter Qp. These novel
couplings leave a distinct signature on the high shear rate
dynamics, which may cause the p-atic director to align at
specific system-dependent angles with respect to the under-
lying velocity field at sufficiently high shear rates. Unlike
in three-dimensional nematics, in which bulk flow alignment
occurs independent of the applied shear rate, the nonlinear
nature of the coupling between orientation and flow for p > 2
renders this phenomenon shear rate dependent, so that flow
alignment can only occur at large shear rates.

Furthermore, using fluctuating hydrodynamics, we have
demonstrated that a shear flow of arbitrary finite shear rate
has the remarkable effect of turning quasi-long-ranged ori-
entational order, i.e., the hallmark of two-dimensional liquid
crystals at equilibrium, into long-ranged order. We have also
shown that fluctuation effects prevent flow alignment at low
shear rates for any value of p, even p = 1 and p = 2, for which
mean field theory would predict flow alignment at arbitrarily
small shear rates.

Two-dimensional liquid crystals naturally arise in suspen-
sions of colloidal particles at an interface (Fig. 1) and in the
melting of crystalline monolayers, as an intermediate state
between solids and isotropic liquids. In the realm of biological
matter, nematic order (i.e., p = 2) is commonly found at both
cellular and subcellular scale. Microcolonies of rod-shaped
sessile bacteria [75–77], monolayer of motile cells [78–80],
in vitro mixtures of cytoskeletal filaments and motor proteins

[81–84], are prominent examples of biological nematic fluids
in two dimensions. These examples have recently attracted
the attention of a large and multidisciplinary community at
the crossroads between soft matter and biophysics. Perhaps
more remarkably, recent computational work by Li and Pica
Ciamarra has suggested that hexatic order (i.e., p = 6) could
exist in confluent epithelial tissues and cell layers [26]. As in
the case of two-dimensional melting, these biological liquid
crystals occupy a region of phase-space intermediate between
solid and liquid, but, unlike in the classic KTHNY sce-
nario, the transition is mainly driven by the cells’ geometrical
frustration and carries over even in the absence of thermal
fluctuations. This prediction found recent support in exper-
imental studies on confluent layers of Madin-Darby canine
kidney (MDCK) cells, which further suggest that multiple
types of p-atic order can be simultaneously present in the
system at different length scales [85]. A theoretical account
of this fascinating example of multiscale liquid crystal order
in biological matter, built upon the formalism introduced here,
can be found in Ref. [86].

In addition to describing biomaterials, our approach is also
particularly well suited for numerical simulations of coars-
ening phenomena and other processes characterized by the
occurence of topological defects. Unlike the local orientation
θ , the order parameter tensor Qp is everywhere defined, in-
cluding within the core of disclinations of arbitrary winding
number. This allows for an efficient description of the dynam-
ics of defective configurations, especially in the absence of
regular patterns, for which the location of these orientational
singularities cannot be predicted a priori.
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APPENDIX A: DERIVATION OF EQ. (11)

Following Ref. [46], in this Appendix, we provide a deriva-
tion of Eq. (11) in terms of derivatives of multipole potentials.
Multipole potentials are tensorial solutions of the Laplace
equation. These can be hierarchically obtained starting from
the Green function X0 = log |r|/d , with d an arbitrary length
scale. For |r| > 0, both X0 and its derivatives ∇⊗pX0 =
∂

p
i1i2··· ip

X0 are solutions of the Laplace equation, from which
one can define the family of tensorial solutions:

X p = −∇X p−1 = (−1)q∇⊗qX p−q, (A1)

with q ∈ N. The tensorial functions X p are proportional to the
irreducible tensor [[r⊗p]] constructed from the components of
the position vector r, which, in turn, are related to Δp,p [46],

024701-18



HYDRODYNAMIC THEORY OF P-ATIC LIQUID CRYSTALS PHYSICAL REVIEW E 106, 024701 (2022)

as follows:

∂
p
i1i2··· ip

[[
r j1 r j2 · · · r jp

]] = p! Δi1i2··· ip j1 j2··· jp . (A2)

Now, starting from X0 and using an inductive construction,
one can show that

[[r⊗p ]] = − 1

[2(p − 1)]!!
r2pX p. (A3)

Finally, combining Eqs. (A2) and (A3) yields Eq. (11).

APPENDIX B: CALCULATION OF THE STRESSES

1. Static stress

To calculate the elastic stress arising in the system in
response to a static deformation of the p-atic tensor, let us
consider an arbitrarily small virtual displacement of the form
r → r + δr acting upon a fluid patch �. The associated free-
energy variation is given by

δF =
∫
�

dA δ f +
∮
∂�

d� f δr · N, (B1)

where f is the free-energy density, and the second term
accounts for the free-energy change associated with a
displacement of the boundaries of the patch, whose outward-
pointing normal vector is indicated with N. Now, defining
δQp as the change in the p-atic tensor induced by the virtual
displacement, and expanding f at the linear order in δQp,
yields

δF = −
∫
�

dA H p � δQp

+
∮
∂�

d�Nj

[
f δr j + ∂ f

∂ (∂ jQp)
� δQp

]
,

where

H p = − δF

δQp
= − ∂ f

∂Qp
+ ∂i

[
∂ f

∂ (∂iQp)

]
(B2)

is the molecular tensor. Next, performing a gradient expan-
sion of δQp by writing δQp = −δri∂iQp yields, after standard
algebraic manipulations,

δF = −
∫
�

dA Qp � ∂iH p δri +
∮
∂�

d�Nj

×
[(

f + H p � Qp

)
δi j − ∂ f

∂ (∂ jQp)
� ∂iQp

]
δri. (B3)

The mechanical work performed on the fluid patch, on the
other hand, can be expressed as

W =
∫
�

dA σ
(e)
i j ε ji = −

∫
�

dA ∂ jσ
(e)
i j δr j +

∮
∂�

d� σ (e)
i j δriNj,

(B4)

with ε ji = ∂ jδri the strain tensor. Comparing the boundary
terms in Eqs. (B3) and (B4) allows us to identify the elastic
stress:

σ
(e)
i j = ( f + H p � Qp)δi j − ∂ f

∂ (∂ jQp)
� ∂iQp, (B5)

whereas a comparison of the bulk integrals yields a Gibbs-
Duhem equation for p-atics:

∂ jσ
(e)
i j = Qp � ∂iH p. (B6)

The procedure outlined above assumes that the mapping
r → r + δr leaves the area of the fluid patch unchanged,
hence trε = ∇ · δr = 0. This constrained could be explicitly
accounted for in the calculation of the free-energy variation
by considering the alternative functional F ′ = F + ∫

dAμ∇ ·
δr, with μ = μ(r) a Lagrange multiplier. This, however, leads
to an additional isotropic term that can be incorporated into
the pressure.

Finally, taking f as given in Eq. (33) yields, up to the afore-
mentioned terms that can be incorporated into the isotropic
pressure, Eq. (63).

2. Dynamic stress

To calculate the reactive stresses arising from linear cou-
plings between the velocity gradient ∇v and the Qp tensor,
one needs to cast the entropy production rate density, Eq. (64),
in the form of Eq. (29d). That is

σ
(d)
i j ∂ jvi + H p � DQp

Dt
= (

σ
(d )
i j − σ

(r)
i j

)
∂ jvi + ∇ · (· · · ).

(B7)

The problem of computing the reactive contribution to the
dynamic stress is then reduced to the simple task of express-
ing the inner product between the molecular tensor and the
material derivative of the p-atic tensor on the left-hand side of
Eq. (B7).

To perform this computation, we ignore the nonlinear term
N p and write

H p � DQp

Dt
= I1 + I2 + λ̄pQp � H p δi j∂ jvi. (B8)

The inner product I1 originates from the corotational deriva-
tive Qp and is given by

I1 = pH p � [[Qp · ω ]]

= − p

2

(
Hk1k2··· iQk1k2··· j∂iv j − Hk1k2··· iQk1k2··· j∂ jvi

)
= − p

2

(
Qk1k2··· iHk1k2··· j − Hk1k2··· iQk1k2··· j

)
∂ jvi. (B9)

Analogously, the inner product I2 can be computed as

I2 = H p � [[∇⊗(p−2)u ]]

= λpHk1k2··· i j∂
p−1
k1k2··· kp−2 jvi

= λp(−1)p−2∂
p−2
k1k2··· kp−2

Hk1k2··· i j∂ jvi + ∇ · (· · · ), (B10)

where the second line is derived from the first one by p − 2
applications of the chain-rule. Combining Eqs. (B9) and (B10)
readily yields Eq. (65).
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APPENDIX C: LONG-RANGED ORDER UNDER SHEAR

1. Derivation of Eqs. (96) and (97)

In the regime where Eq. (83) holds, inertial and O(|∇ϑ |2)
terms can be neglected. Then, approximating

σ (s) + σ (r) = −P01 + Kp

2
ε∇2ϑ + O(|∇ϑ |2), (C1)

by virtue of Eq. (77), and decomposing the velocity as in
Eq. (94) allows us to cast Eqs. (92) in the simplified form

0 = η∇2δω − Kp

2
∇4ϑ ′ + ξ (ω), (C2a)

(∂t + 〈v〉 · ∇)ϑ ′ = D∇2ϑ ′ + δω

2
+ ξ (ϑ ), (C2b)

where δω = ∂xδvy − ∂yδvx and ϑ ′ = ϑ + ε̇t/2. Next, drop-
ping the prime for sake of conciseness and expressing
Eqs. (C2) in Fourier space gives

0 = −ηq2δω̂ − Kp

2
q4ϑ̂ + ξ̂ (ω), (C3a)

(∂t + 〈v〉 · ∇)ϑ̂ = −Dq2ϑ̂ + δω̂

2
+ ξ̂ (ϑ ), (C3b)

where δω̂ = δω̂(q, t ), δϑ̂ = δϑ̂ (q, t ) and ξ̂ (α) = ξ̂ (α)(q, t ),
with α = {ω, ϑ}, are time-dependent Fourier amplitudes and

〈ξ (α)(q, t )ξ (β )(q′, t ′)〉

= 2kBT (2π )2

(
1

γp
δαϑδβϑ + ηq4δαωδβω

)
δ(q + q′)δ(t − t ′).

(C4)

Solving Eq. (C3a) with respect to δω(q, t ) readily yields

δω̂ = −Kp

2η
q2ϑ̂ + ξ̂ (ω)

ηq2
. (C5)

Replacing this in Eq. (C3b) then gives

∂t ϑ̂ = −q2Deff ϑ̂ + ξ̂ , (C6)

where

ξ̂ = ξ̂ (ϑ ) + ξ̂ (ω)

2ηq2
, (C7)

is an effective rotational noise, whose correlation function can
be readily computed from Eq. (C4), to give

〈ξ̂ (q, t )ξ̂ (q′, t ′)〉 = 2kBT

γeff
(2π )2δ(q + q′)δ(t − t ′), (C8)

where γeff = Kp/Deff . Finally, expressing Eqs. (C6) and (C8)
in real space, one obtains Eqs. (96) and (97).

2. Derivation of Eq. (100)

Calculating the p-atic correlation function 〈ψ∗
p (r)ψp(0)〉

requires computing the orientational structure factor
〈|ϑ (q, t )|2〉 appearing in Eq. (98). Following Onuki
[87] and Ramaswamy [69], this can be achieved by
solving the stochastic partial differential equation Eq. (96).
As in the previous subsection, we incorporate the vorticity

into the definition of the ϑ field. This yields

∂tϑ
′ + ε̇y ∂xϑ

′ = Deff∇2ϑ ′ + ξ, (C9)

where we have set again ϑ ′ = ϑ + ε̇t/2. Notice that, since
ωxy = −ε̇/2 is uniform in space, this change of variable does
not affect the equal time connected correlation function: i.e.,
〈[ϑ ′(r, t ) − ϑ ′(0, t )]2〉 = 〈[ϑ (r, t ) − ϑ (0, t )]2〉.

Next, we can eliminate the convective term in Eq. (C9) by
performing the following position-dependent Galilean trans-
formation:

x′ = x − vxt = x − ε̇yt, (C10a)

y′ = y, (C10b)

t ′ = t . (C10c)

This yields

∂t ′ϑ ′ = Deff
[
∂2

x′ + (∂y′ − ε̇t∂x′ )2
]
ϑ ′ + ξ . (C11)

As in the previous section, we drop all primes for conciseness
and express Eq. (C11) in terms of spatially Fourier trans-
formed amplitudes. That is

∂t ϑ̂ = −Deff
[
q2

x + (qy − ε̇tqx )2
]
ϑ̂ + ξ̂ , (C12)

whose general solution in Fourier space can be straightfor-
wardly expressed in the form

ϑ̂ (q, t ) = eS(q,t )

[
ϑ̂ (q, 0) +

∫ t

0
dt ′ e−S(q,t ′ )ξ̂ (q, t ′)

]
, (C13)

where

S(q, t ) = −Deff

∫ t

0
dt ′ [q2

x + (qy − ε̇t ′qx )2
]
. (C14)

The first term on the right-hand side of Eq. (C13) vanishes
in the long-time limit and can be ignored without loss of
generality. The second term, on the other hand, can be used
to compute the orientational structure factor, yielding

〈|ϑ̂ (q, t )|2〉 = 2kBT

γeff
e2S(q,t )

∫ t

0
dt ′ e−2S(q,t ′ ). (C15)

In practice, it is more convenient to swap the order of the
integrals over t and q in Eq. (98) and take advantage of the
integration formula for multivariate Gaussian integrals:∫

Rd

dd q e− 1
2 q·M·q+iq·r =

√
(2π )d

det M
e− 1

2 r·M−1·r, (C16)

with M a d × d matrix of coefficients independent on q.
Notice that, unlike in Eqs. (98), here the integration is ex-
tended over the whole d-dimensional real space. This leads
to divergences that, nevertheless, cancel out in the connected
correlation function upon introducing a suitable short-distance
cutoff. To illustrate this strategy, let us consider again the
ε̇ = 0 case. The equal-time two-point correlation function can
be expressed as

〈ϑ (r, t )ϑ (0, t )〉 = 2kBT

γeff

∫ t

0
dt ′
∫
R2

d2q

(2π )2
e− 1

2 q·M·q+iq·r,

(C17)
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with M = 4Deff (t − t ′)1. Calculating the integral over q
yields

〈ϑ (r, t )ϑ (0, t )〉 = 2kBT

γeff

∫ t

0

dt ′

2π

e
− |r|2

8Deff (t−t ′ )

4Deff (t − t ′)

= − kBT

4πKp
Ei

(
− |r|2

8Defft

)
. (C18)

Now, in the limit of t → ∞, the exponential integral diverges
logarithmically:

Ei(±z) = γEM + log z ± z + O(z2), 0 < z � 1,

with γEM the Euler-Mascheroni constant. This singular be-
havior can be regularized by approximating 〈|ϑ (0, t )|2〉 ≈
〈ϑ (a, t )ϑ (0, t )〉, where the vector a = aer traces the boundary
of a small disk-shaped region around the origin. Then, using
the expansion of the exponential integral, we can express the
connected correlation function in the standard form in the long
time limit. This gives

g(r) ≈ − kBT

4πKp

[
Ei

(
− a2

8Defft

)
− Ei

(
− |r|2

8Defft

)]
t→∞−−−→ kBT

2πKp
log

|r|
a
, (C19)

consistent with the equilibrium result, Eq. (89).
Now, for ε̇ �= 0, carrying out the integral over q yields

〈ϑ (r, t )ϑ (0, t )〉 = 2kBT

γeff
lim

t→∞

∫ t

0

dt ′

2π

e− 1
2 r·M−1·r

√
det M

, (C20)

where the M matrix is given by

M = 4Deff

[
t − t ′ + 1

3 ε̇
2(t3 − t ′3) − 1

2 ε̇(t2 − t ′2)

− 1
2 ε̇(t2 − t ′2) t − t ′

]
.

Reintroducing the original coordinates, via Eq. (C10), yields
the equal time correlation function in the following integral

form:

〈ϑ (r, t )ϑ (0, t )〉 = kBT

2πKp

∫ t

0

d�t

�t
√

4 + 1
3 ε̇

2�t2

× exp

[
−x2 − ε̇�t xy+(1+ 1

3 ε̇
2�t2

)
y2

2D�t
(
4 + 1

3 ε̇
2�t2

) ]
,

(C21)

where �t = t − t ′. Finally, taking τ = ε̇�t , switching to po-
lar coordinates, and taking the limit t → ∞, allows one to
express the steady state connected correlation function in the
form given by Eq. (100).

3. Derivation of Eq. (102)

As the function G(τ, φ) in Eq. (101) approximately scales
like G(τ, φ) ∼ 1/τ , the exponential factor exp[−G(τ, φ)z2],
with z � 1, affects the magnitude integrand only for τ � 1
and rapidly plateaus to one for τ � 1. Taking advantage of
this, one can approximate∫ ∞

0
dτ

e−G(τ,φ)z2

τ

√
4 + 1

3τ
2

≈
∫ 1

0
dτ

e− z2

8τ

2τ
+
∫ ∞

1

dτ

τ

√
4 + 1

3τ
2

= −1

2
Ei

(
− z2

8

)
+ 1

2
arcsinh2

√
3.

(C22)

This approximation can always be applied to the first integral
at the right-hand side Eq. (100), since the cutoff radius a is
a microscopic length scale, and, for r � �s, to the second
integral as well. Using again the expansion of the exponential
integral, this readily yields the usual logarithmic dependence,
Eq. (C19), in the short-distance limit. Similarly, for r � �s the
second integral at the right-hand side of Eq. (100) vanishes,
whereas the first integral yields again Eq. (C22) with z = a/�s,
from which one recovers Eq. (102).

[1] B. I. Halperin and D. R. Nelson, Theory of Two-Dimensional
Melting, Phys. Rev. Lett. 41, 121 (1978).

[2] D. R. Nelson and B. I. Halperin, Dislocation-mediated melting
in two dimensions, Phys. Rev. B 19, 2457 (1979).

[3] J. M. Kosterlitz and D. J. Thouless, Long-range order and
metastability in two-dimensional solids and superfluids, J. Phys.
C 5, L124 (1972).

[4] J. M. Kosterlitz and D. J. Thouless, Ordering metastability and
phase transitions in two-dimensional systems, J. Phys. C 6,
1181 (1973).

[5] A. P. Young, Melting and the vector Coulomb gas in two dimen-
sions, Phys. Rev. B 19, 1855 (1979).

[6] P. Bladon and D. Frenkel, Dislocation Unbinding in Dense Two-
Dimensional Crystals, Phys. Rev. Lett. 74, 2519 (1995).

[7] E. P. Bernard and W. Krauth, Two-Step Melting in Two Dimen-
sions: First-Order Liquid-Hexatic Transition, Phys. Rev. Lett.
107, 155704 (2011).

[8] K. Zahn, R. Lenke, and G. Maret, Two-Stage Melting of Param-
agnetic Colloidal Crystals in Two Dimensions, Phys. Rev. Lett.
82, 2721 (1999).

[9] U. Gasser, C. Eisenmann, G. Maret, and P. Keim, Melt-
ing of crystals in two dimensions, ChemPhysChem 11, 963
(2010).

[10] A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts, and R. P. A.
Dullens, Two-Dimensional Melting of Colloidal Hard Spheres,
Phys. Rev. Lett. 118, 158001 (2017).

[11] J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel, and S. C.
Glotzer, Shape and Symmetry Determine Two-Dimensional
Melting Transitions of Hard Regular Polygons, Phys. Rev. X
7, 021001 (2017).

[12] A. J. Beekman, J. Nissinen, K. Wu, K. Liu, R.-J. Slager, Z.
Nussinov, V. Cvetkovic, and J. Zaanen, Dual gauge field theory
of quantum liquid crystals in two dimensions, Phys. Rep. 683,
1 (2017).

024701-21

https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevLett.74.2519
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1002/cphc.200900755
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1016/j.physrep.2017.03.004


LUCA GIOMI, JOHN TONER, AND NILADRI SARKAR PHYSICAL REVIEW E 106, 024701 (2022)

[13] P. Sartori and C. F. Lee, Scaling behaviour of nonequilibrium
planar N-atic spin systems under weak fluctuations, New J.
Phys. 21, 073064 (2019).

[14] A. Maitra, M. Lenz, and R. Voituriez, Chiral Active Hexatics:
Giant Number Fluctuations, Waves, and Destruction of Order,
Phys. Rev. Lett. 125, 238005 (2020).

[15] A. Mietke and J. Dunkel, Anyonic Defect Braiding and Sponta-
neous Chiral Symmetry Breaking in Dihedral Liquid Crystals,
Phys. Rev. X 12, 011027 (2022).

[16] M. J. Bowick, O. V. Manyuhina, and F. Serafin, Shapes and
singularities in triatic liquid-crystal vesicles, Europhys. Lett.
117, 26001 (2017).

[17] A. Zippelius, B. I. Halperin, and D. R. Nelson, Dynamics of
two-dimensional melting, Phys. Rev. B 22, 2514 (1980).

[18] A. Zippelius, Large-distance and long-time properties of two-
dimensional solids and hexatic liquid crystals, Phys. Rev. A 22,
732 (1980).

[19] E. B. Sonin and W. F. Vinen, The hydrodynamics of a two-
dimensional hexatic phase, J. Phys.: Condens. Matter 10, 2191
(1998).

[20] M. S. Krieger, S. E. Spagnolie, and T. R. Powers, Locomotion
and transport in a hexatic liquid crystal, Phys. Rev. E 90, 052503
(2014).

[21] Y. Zhang and R. A. Weinberg, Epithelial-to-mesenchymal tran-
sition in cancer: Complexity and opportunities, Front. Med. 12,
361 (2018).

[22] A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A.
Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona,
and O. Campàs, A fluid-to-solid jamming transition underlies
vertebrate body axis elongation, Nature 561, 401 (2018).

[23] A. Brugués, E. Anon, V. Conte, J. H. Veldhuis, M. Gupta, J.
Colombelli, J. J. Muñoz, G. W. Brodland, B. Ladoux, and X.
Trepat, Forces driving epithelial wound healing, Nat. Phys. 10,
683 (2014).

[24] T. Nagai and H. Honda, A dynamic cell model for the formation
of epithelial tissues, Philos. Mag. B 81, 699 (2001).

[25] R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F.
Jülicher, The influence of cell mechanics, cell-cell interactions,
and proliferation on epithelial packing, Curr. Biol. 17, 2095
(2007).

[26] Y.-W. Li and M. P. Ciamarra, Role of cell deformability in
the two-dimensional melting of biological tissues, Phys. Rev.
Materials 2, 045602 (2018).

[27] K. Zhao, R. Bruinsma, and T. G. Mason, Local chiral sym-
metry breaking in triatic liquid crystals, Nat. Commun. 3, 801
(2012).

[28] R. C. Löffler, Phase behavior of 2D monolayers of cubic col-
loids, Master thesis, Universität Konstanz, 2018.

[29] R. Sánchez, and L. A. Aguirre-Manzo, Concentric tetratic ori-
entational order in a confined quasi-2D tubular system, Phys.
Scr. 90, 095002 (2015).

[30] Ariel Díaz-De Armas, M. Maza-Cuello, Y. Martínez-Ratón, and
E. Velasco, Domain walls in vertically vibrated monolayers
of cylinders confined in annuli, Phys. Rev. Res. 2, 033436
(2020).

[31] P.-Y. Wang, and T. G. Mason, A Brownian quasi-crystal
of preassembled colloidal Penrose tiles, Nature 561, 94
(2018).

[32] W. F. Brinkman, D. S. Fisher, D. E. Moncton, Melting of two-
dimensional solids, Science 217, 693 (1982).

[33] D. J. Bishop, P. L. Gammel, D. A. Huse, and C. A. Murray,
Magnetic flux-line lattices and vortices in the copper oxide
superconductors, Science 255, 165 (1992).

[34] I. Guillamón, H. Suderow, A. Fernández-Pacheco, J. Sesé, R.
Córdoba, J. M. De Teresa, M. R. Ibarra, and S. Vieira, Direct
observation of melting in a two-dimensional superconducting
vortex lattice, Nat. Phys. 5, 651 (2009).

[35] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals
(Oxford University Press, Oxford, UK, 1993).

[36] M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An
Introduction (Springer International Publishing, New York, NY,
2003).

[37] E. J. L. de Oliveira, D. C. S. de Melo, M. S. S. Pereira, L. R.
Evangelista, and I. N. de Oliveira, Surface and finite-size effects
on N-SmA-SmC phase transitions in free-standing films, Phys.
Rev. E 102, 022702 (2020).

[38] A. J. Jin, M. Veum, T. Stoebe, C. F. Chou, J. T. Ho, S. W.
Hui, V. Surendranath, and C.-C. Huang, Nature of the smectic-
A-hexatic-B-crystal-B transitions of a liquid-crystal compound,
Phys. Rev. E 53, 3639 (1996).

[39] C.-F. Chou, J. T. Ho, and S. W. Hui, Electron diffraction study
of a one-layer free-standing hexatic liquid-crystal film, Phys.
Rev. E 56, 592 (1997).

[40] C.-F. Chou, A. J. Jin, S. Hui, C.-C. Huang, and J. T. Ho,
Multiple-step melting in two-dimensional hexatic liquid-crystal
films, Science 280, 1424 (1998).

[41] R. Pindak, W. O. Sprenger, D. J. Bishop, D. D. Osheroff, and
J. W. Goodby, Mechanical Measurements on Free-Standing
Films of Smectic Liquid-Crystal Phases, Phys. Rev. Lett. 48,
173 (1982).

[42] S. B. Dierker, R. Pindak, and R. B. Meyer, Consequences of
Bond-Orientational Order on the Macroscopic Orientation Pat-
terns of Thin Tilted Hexatic Liquid-Crystal Films, Phys. Rev.
Lett. 56, 1819 (1986).

[43] L. Giomi, J. Toner, and N. Sarkar, Long-Ranged Order and
Flow Alignment in Sheared p-atic Liquid Crystals, Phys. Rev.
Lett. 129, 067801 (2022).

[44] P. E. Lammert, D. S. Rokhsar and J. Toner, Topology and
nematic ordering. I. A gauge theory, Phys. Rev. E 52, 1778
(1995).

[45] K. Liu, J. Nissinen, R.-J. Slager, K. Wu, and J. Zaanen, Gen-
eralized Liquid Crystals: Giant Fluctuations and the Vestigial
Chiral Order of I , O, and T Matter, Phys. Rev. X 6, 041025
(2016).

[46] S. Hess, Tensors for Physics (Springer International Publishing,
New York, NY, 2015).

[47] J.-M. Park and T. C. Lubensky, Topological defects on fluctu-
ating surfaces: General properties and the Kosterlitz-Thouless
transition, Phys. Rev. E 53, 2648 (1996).

[48] Q.-s. Zheng, Two-dimensional tensor function representation
for all kinds of material symmetry, Proc. R. Soc. London A 443,
127 (1993).

[49] J. M. Kosterlitz, The critical properties of the two-dimensional
XY model, J. Phys. C: Solid State Phys. 7, 1046 (1974).

[50] C. Udink and J. van der Elsken, Determination of the algebraic
exponents near the melting transition of a two-dimensional
Lennard-Jones system, Phys. Rev. B 35, 279 (1987).

[51] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and
Correlation Functions (W. A. Benjamin Advanced Book Pro-
gram, Reading, MA, 1975).

024701-22

https://doi.org/10.1088/1367-2630/ab2f0f
https://doi.org/10.1103/PhysRevLett.125.238005
https://doi.org/10.1103/PhysRevX.12.011027
https://doi.org/10.1209/0295-5075/117/26001
https://doi.org/10.1103/PhysRevB.22.2514
https://doi.org/10.1103/PhysRevA.22.732
https://doi.org/10.1088/0953-8984/10/10/004
https://doi.org/10.1103/PhysRevE.90.052503
https://doi.org/10.1007/s11684-018-0656-6
https://doi.org/10.1038/s41586-018-0479-2
https://doi.org/10.1038/nphys3040
https://doi.org/10.1080/13642810108205772
https://doi.org/10.1016/j.cub.2007.11.049
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1038/ncomms1803
https://doi.org/10.1088/0031-8949/90/9/095002
https://doi.org/10.1103/PhysRevResearch.2.033436
https://doi.org/10.1038/s41586-018-0464-9
https://doi.org/10.1126/science.217.4561.693
https://doi.org/10.1126/science.255.5041.165
https://doi.org/10.1038/nphys1368
https://doi.org/10.1103/PhysRevE.102.022702
https://doi.org/10.1103/PhysRevE.53.3639
https://doi.org/10.1103/PhysRevE.56.592
https://doi.org/10.1126/science.280.5368.1424
https://doi.org/10.1103/PhysRevLett.48.173
https://doi.org/10.1103/PhysRevLett.56.1819
https://doi.org/10.1103/PhysRevLett.129.067801
https://doi.org/10.1103/PhysRevE.52.1778
https://doi.org/10.1103/PhysRevX.6.041025
https://doi.org/10.1103/PhysRevE.53.2648
https://doi.org/10.1098/rspa.1993.0135
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevB.35.279


HYDRODYNAMIC THEORY OF P-ATIC LIQUID CRYSTALS PHYSICAL REVIEW E 106, 024701 (2022)

[52] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, UK,
1995).

[53] G. Gallavotti, Foundations of Fluid Dynamics (Springer-Verlag,
Berlin, 2002).

[54] P. D. Olmsted and P. M. Goldbart, Isotropic-nematic transition
in shear flow: State selection, coexistence, phase transitions,
and critical behavior, Phys. Rev. A 46, 4966 (1992).

[55] K. Schiele and S. Trimper, On the elastic constants of a nematic
liquid crystal, Phys. Status Solidi B 118, 267 (1983).

[56] K. Kruse, J. F. Joanny, F. Julicher, J. Prost, and K. Sekimoto,
Asters, Vortices, and Rotating Spirals in Active Gels of Polar
Filaments, Phys. Rev. Lett. 92, 078101 (2004).

[57] W. Kung, M. C. Marchetti, and K. Saunders, Hydrodynamics of
polar liquid crystals, Phys. Rev. E 73, 031708 (2006).

[58] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(Oxford University Press, Oxford, UK, 1986).

[59] L. D. Landau and E. M. Lifshitz, Theory of Elasticity: Vol. 7,
3rd ed. (Butterworth-Heinemann, Oxford, UK, 1986).

[60] S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics
(Dover Publications, Mineola, NY, 1984).

[61] J. E. Avron, Odd viscosity, J. Stat. Phys. 92, 543 (1998).
[62] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo,

M. J. Shelley, and W. T. M. Irvine, The odd free surface flows
of a colloidal chiral fluid, Nat. Phys. 15, 1188 (2019).

[63] G. Napoli and L. Vergori, Hydrodynamic theory for nematic
shells: The interplay among curvature, flow, and alignment,
Phys. Rev. E 94, 020701(R) (2016).

[64] G. F. Mazenko, S. Ramaswamy, and J. Toner, Breakdown
of conventional hydrodynamics for smectic-A, hexatic-B, and
cholesteric liquid crystals, Phys. Rev. A 28, 1618 (1983).

[65] D. R. Nelson, Study of melting in two dimensions, Phys. Rev.
B 18, 2318 (1978).

[66] S. Ostlund and B. I. Halperin, Dislocation-mediated melting of
anisotropic layers, Phys. Rev. B 23, 335 (1981).

[67] L. Radzihovsky and J. Toner (unpublished).
[68] A. Onuki and K. Kawasaki, Nonequilibrium steady state of crit-

ical fluids under shear flow: A renormalization group approach,
Ann. Phys. 121, 456 (1979).

[69] S. Ramaswamy, Solidlike behavior in liquid layers: A the-
ory of the yield stress in smectics, Phys. Rev. A 29, 1506
(1984).

[70] D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and
long-time properties of a randomly stirred fluid, Phys. Rev. A
16, 732 (1977).

[71] S. T. Chui and J. D. Weeks, Dynamics of the Roughening
Transition, Phys. Rev. Lett. 40, 733 (1978).

[72] S. P. Thampi, R. Golestanian, and J. M. Yeomans, Driven active
and passive nematics, Mol. Phys. 113, 2656 (2015).

[73] M. Tinkham, Introduction to Superconductivity (McGraw Hill,
New York, NY, 1975).

[74] G. I. Taylor, Stability of a viscous liquid contained between
two rotating cylinders, Philos. Trans. R. Soc. London 223, 289
(1923).

[75] Z. You, D. J. G. Pearce, A. Sengupta, and L. Giomi, Geom-
etry and Mechanics of Microdomains in Growing Bacterial
Colonies, Phys. Rev. X 8, 031065 (2018).

[76] D. Dell’Arciprete, M. L. Blow, A. T. Brown, F. D. C. Farrell,
J. S. Lintuvuori, A. F. McVey, D. Marenduzzo, and W. C. K.
Poon, A growing bacterial colony in two dimensions as an
active nematic, Nat. Commun. 9, 4190 (2018).

[77] H. Li, X.-q. Shi, M. Huang, X. Chen, M. Xiao, C. Liu, H. Chaté,
and H. P. Zhang, Data-driven quantitative modeling of bacterial
active nematics, Proc. Natl. Acad. Sci. USA 116, 777 (2019).

[78] G. Duclos, S. Garcia, H. G. Yevick, and P. Silberzan, Perfect
nematic order in confined monolayers of spindle-shaped cells,
Soft Matter 10, 2346 (2014).

[79] K. Kawaguchi, R. Kageyama, and M. Sano, Topological defects
control collective dynamics in neural progenitor cell cultures,
Nature 545, 327 (2017).

[80] G. Duclos, C. Erlenkämper, J.-F. Joanny, and P. Silberzan,
Topological defects in confined populations of spindle-shaped
cells, Nat. Phys. 13, 58 (2017).

[81] T. Sanchez, D. N. Chen, S. J. DeCamp, M. Heymann, and Z.
Dogic, Spontaneous motion in hierarchically assembled active
matter, Nature 491, 431 (2012).

[82] S. J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan, and Z.
Dogic, Orientational order of motile defects in active nematics,
Nat. Mater. 14, 1110 (2015).

[83] Y. Asano, A. Jiménez-Dalmaroni, T. B. Liverpool, M. C.
Marchetti, L. Giomi, A. Kiger, T. Duke, and B. Baum, Pak3
inhibits local actin filament formation to regulate global cell
polarity, HFSP J. 3, 194 (2009).

[84] L. M. Lemma, S. J. DeCamp, Z. You, L. Giomi, and Z. Dogic,
Statistical properties of autonomous flows in 2D active nemat-
ics, Soft Matter 15, 3264 (2019).

[85] J.-M. Armengol-Collado, L. N. Carenza, J. Eckert, D.
Krommydas, and L. Giomi, Epithelia are multiscale active liq-
uid crystals, arXiv:2202.00668.

[86] J.-M. Armengol-Collado, L. N. Carenza, J. Eckert, D.
Krommydas, and L. Giomi, Hydrodynamics and multiscale or-
der in confluent epithelia, arXiv:2202.00651.

[87] A. Onuki, Non-Newtonian effect and long-range correlation in
shear flow in two dimensions, Phys. Lett. A 70, 31 (1979).

024701-23

https://doi.org/10.1103/PhysRevA.46.4966
https://doi.org/10.1002/pssb.2221180132
https://doi.org/10.1103/PhysRevLett.92.078101
https://doi.org/10.1103/PhysRevE.73.031708
https://doi.org/10.1023/A:1023084404080
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1103/PhysRevE.94.020701
https://doi.org/10.1103/PhysRevA.28.1618
https://doi.org/10.1103/PhysRevB.18.2318
https://doi.org/10.1103/PhysRevB.23.335
https://doi.org/10.1016/0003-4916(79)90105-2
https://doi.org/10.1103/PhysRevA.29.1506
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.1103/PhysRevLett.40.733
https://doi.org/10.1080/00268976.2015.1031840
https://doi.org/10.1098/rsta.1923.0008
https://doi.org/10.1103/PhysRevX.8.031065
https://doi.org/10.1038/s41467-018-06370-3
https://doi.org/10.1073/pnas.1812570116
https://doi.org/10.1039/C3SM52323C
https://doi.org/10.1038/nature22321
https://doi.org/10.1038/nphys3876
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nmat4387
https://doi.org/10.2976/1.3100548
https://doi.org/10.1039/C8SM01877D
http://arxiv.org/abs/arXiv:2202.00668
http://arxiv.org/abs/arXiv:2202.00651
https://doi.org/10.1016/0375-9601(79)90318-9

