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We formulate a hydrodynamic theory of p-atic liquid crystals, namely, two-dimensional anisotropic
fluids endowed with generic p-fold rotational symmetry. Our approach, based on an order parameter tensor
that directly embodies the discrete rotational symmetry of p-atic phases, allows us to unveil several
unknown aspects of flowing p-atics, that previous theories, characterized by O(2) rotational symmetry,
could not account for. This includes the onset of long-ranged orientational order in the presence of a simple
shear flow of arbitrary shear rate, as opposed to the standard quasi-long-ranged order of two-dimensional
liquid crystals, and the possibility of flow alignment at large shear rates.
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One of the most surprising results in condensed matter
physics is the prediction by Halperin and Nelson [1,2] that
two-dimensional solids can melt via a two-step process,
known as the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) scenario [3–5]. Upon increasing temperature, the
unbinding of neutral dislocation pairs transforms a two-
dimensional crystal, characterized by quasi-long-ranged
translational order and long-ranged p-fold orientational
order (i.e., invariance with respect to rotations by 2π=p,
with p ¼ 1; 2; 3…), into a p-atic liquid crystal, in which
the orientational order is preserved, albeit reduced to quasi-
long-ranged, while translational order is lost. A further
increase in temperature drives the transition of the liquid
crystal into an isotropic liquid, in which both translational
and orientational order are short-ranged order. As crystals
comprising isotropically interacting building blocks are
generally sixfold coordinated, the KTHNY scenario implies
the existence of a hexatic phase (i.e., p ¼ 6) intermediate
between two-dimensional crystals and isotropic liquids.
Since its theoretical prediction, p-atic phases and the

KTHNY melting scenario have been subject to extensive
theoretical and experimental investigation [6–11]. By con-
trast, the hydrodynamic behavior ofp-atics has received little
attention and, with the exception of a small number of
pioneering works, e.g., Refs. [12–15], is still largely unex-
plored. Furthermore, previous hydrodynamic theories of
p-atics are characterized byO(2) rotational symmetry, which
is higher than the actual p-fold symmetry of p-atic phases.
Yet, recent findings in tissue mechanics have reignited

interest in p-atic hydrodynamics, by providing these phases
of matter with unexpected biological relevance. Using a
popular cell-resolved model of confluent epithelial tissues
[16,17], Li and Pica Ciamarra have recently demonstrated
that, as for two-dimensional crystals, the solid and the
isotropic liquid states of these model epithelia are separated
by an intermediate hexatic phase, in which cells are

orientationally ordered and yet able to flow [18]. This
prediction found recent support in experimental studies on
confluent layers of Madin-Darby canine kidney cells,
which further suggest that multiple types of p-atic order
can be simultaneously present in the system at different
length scales [19]. These discoveries shed new light on the
complex physics of tissues and, simultaneously, provide a
strong motivation for investigating hexatic hydrodynamics
and, more generally, the hydrodynamics of p-atic liquid
crystals, more deeply.
In this Letter, we go beyond the classic O(2) picture

of p-atic hydrodynamics. Using a phenomenological
approach rooted in the p-atic tensor order parameter, whose
algebraic structure directly embodies the discrete rotational
symmetry of p-atics, we identify additional couplings
between p-atic order and flow. These novel couplings
leave a distinct signature on the high shear rate dynamics,
which may cause the p-atic director to align at specific
system-dependent angles with respect to the underlying
velocity field. Moreover, we demonstrate that a shear flow
of arbitrary finite shear rate has the remarkable effect of
turning quasi-long-ranged orientational order, i.e., the
hallmark of two-dimensional liquid crystals at equilibrium,
into long-ranged order. A longer and more detailed account
of our results is given in Ref. [20].
We consider a generic p-atic liquid crystal, whose

microscopic constituents can be assigned a direction ν ¼
cos ϑ ex þ sin ϑ ey [Fig. 1(a)]. The latter may represent a
specific molecular direction, corresponding, e.g., to a par-
ticular functional group, or be conventionally assigned.
Local p-atic order is then embodied in the complex
function ψp ¼ eipϑ, whose correlation function decays
algebraically in equilibrium: i.e., hψ�

pðrÞψpð0Þi ∼ jrj−ηp ,
where 0 < ηp ≤ 1=4 is a nonuniversal (i.e., temperature-
dependent) exponent [1,2]. Equivalently, the p-atic order
parameter
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Ψp ¼ hψpi ¼ jΨpjeipθ; ð1Þ

with θ the average molecular orientation [Fig. 1(a)],
depends on the length scale l at which it is probed, i.e.,
jΨpj ∼ l−ηp=2, and vanishes in the infinite system size limit,
i.e., liml→∞jΨpj ¼ 0.
The central object in our approach is the rank-p tensor

order parameter Qp ¼ Qi1i2…ipei1 ⊗ ei2 ⊗ � � � ⊗ eip with
in ¼ fx; yg and n ¼ 1; 2…p, constructed upon averaging
the pth tensorial power of the local orientation ν. That is,

Qp ¼
ffiffiffiffiffiffiffiffiffi
2p−2

p
⟦hν⊗pi⟧ ¼

ffiffiffiffiffiffiffiffiffi
2p−2

p
jΨpj⟦n⊗p⟧; ð2Þ

where n ¼ cos θ ex þ sin θ ey and the operator ⟦ � � � ⟧ has
the effect of rendering an arbitrary tensor symmetric with
respect to the exchange of any two indices and traceless,
i.e., Qjji3…ip ¼ 0 [21]. For p ¼ 2, Eq. (2) readily gives
the standard nematic order parameter tensor, i.e.,
Q2 ¼ jΨ2jðn ⊗ n − 1=2Þ, with 1 the identity tensor.
Together with the mass density ρ and the momentum

density ρv, with v the local velocity field, the order
parameter tensor Qp is a “hydrodynamic variable” of
p-atics, that is, a material field whose relaxation rate
vanishes at large length scales [22]. The hydrodynamic
equation governing the spatiotemporal evolution of such a
broken symmetry variable can be obtained by expressing its
time derivative as a sum of all possible symmetric and
traceless rank-p tensor combinations of the velocity

gradient tensors ∇v with Qp and its gradients. This
procedure, detailed in Ref. [20], yields the following set
of partial differential equations:

Dρ

Dt
þ ρ∇ · v ¼ 0; ð3aÞ

ρ
Dv
Dt

¼ ∇ · σ þ f ; ð3bÞ

DQp

Dt
¼ ΓpHp þ p⟦Qp · ω⟧þ λ̄ptrðuÞQp

þ λp⟦∇⊗ðp−2Þu⟧þ νp⟦∇⊗ðp mod 2Þu⊗bp=2c⟧; ð3cÞ

where D=Dt ¼ ∂t þ v ·∇ is the material derivative, the
rank-2 tensorsω¼½∇v−ð∇vÞT �=2 and u¼½∇vþð∇vÞT �=2,
with T indicating transposition, are, respectively, the
vorticity and strain rate tensors, and the dot product implies
a contraction of one index on Q with one on ω. That
is, ðQp · ωÞi1i2…ip ¼ Qiii2…jωjip .
Equations (3a) and (3b) are the standard mass and

momentum conservation equations, respectively, with σ
the stress tensor and f an external force per unit area. In
Eq. (3c), Γp

−1 is a rotational viscosity, andHp ¼ −δF=δQp

is the molecular tensor describing the relaxation of the
p-atic phase toward the minimum of the free energy F.
This, in turn, can be constructed in the standard Landau–de
Gennes form [23]:

F ¼
Z

dA

�
1

2
Lpj∇Qpj2 þ

1

2
ApjQpj2 þ

1

4
BpjQpj4

�
; ð4Þ

where j � � � j2 indicates for theEuclideannorm, obtained from
the full contraction of a tensor with itself. In particular,
jQpj2 ¼ jΨpj2=2. The constant Lp is the order parameter
stiffness,whileAp andBp are phenomenological coefficients
favoring a nonvanishing jΨpj value in the ordered phase,

whereAp < 0. Specifically, jΨpj ¼ jΨð0Þ
p j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Ap=Bp

p
at

theminimumof the free energy. In the second line inEq. (3c),
ð∇⊗nÞi1i2…in ¼ ∂i1∂i2…∂in , while b� � �c denotes the floor
function and p mod 2 ¼ p − 2bp=2c is zero for even p
values and one for odd p values. Finally, λ̄p, λp, and νp are
material parameters expressing the strength of the coupling
between p-atic order and flow.
The stress tensor σ can be generically decomposed as

σ ¼ −P1þ σðeÞ þ σðrÞ þ σðvÞ, where P is the pressure,

σðeÞij ¼ −Lp∂iQk1k2…kp∂jQk1k2…kp ð5Þ

is the elastic stress arising in response to a static deforma-
tion of a fluid patch, and σðrÞ and σðvÞ are, respectively, the
reactive (i.e., energy-preserving) and viscous (i.e., energy-
dissipating) stresses originating from the reversible and
irreversible couplings between p-atic order and flow.

(a)

(b) (c)

0

FIG. 1. (a) Illustration of triatic building blocks (left) together
with the corresponding coarse-grained p-atic director (right). (b),
(c) Typical configuration of the triatic director (b) and velocity
field (c) coarsening from an initially disordered state. The data in
displayed in (b) and (c) have been obtained by a numerical
integration [Eqs. (3)] in the incompressible limit (i.e., ρ ¼ const).
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Calculating the entropy production rate [20] allows one to
express the former as

σðrÞij ¼ −λ̄pQk1k2…kpHk1k2…kpδij

þ ð−1Þp−1λp∂p−2k1k2…kp−2
Hk1k2…ij

þ p
2
ðQk1k2…iHk1k2…j −Hk1k2…iQk1k2…jÞ: ð6Þ

Analogously, using Onsager’s reciprocal relations allows
one to express the viscous stress tensor in the form
σðvÞ ¼ η∶∇v, where the colon product denotes a contrac-
tion of two indices and η is the rank-4 viscosity tensor. As
in conventional liquid crystals, this tensor could have,
a priori, both an isotropic and an anisotropic component:
i.e., η ¼ ηðiÞ þ ηðaÞ, with

ηðiÞijkl ¼ ζδijδkl þ ηðδikδjl þ δilδjk − δijδklÞ; ð7Þ

and ζ and η the bulk and shear viscosity, respectively.
However, for all p > 2, except p ¼ 4, as shown in
Ref. [20], ηðaÞ vanishes. Hence, kinetic energy is isotropi-
cally dissipated throughout the flow. For p ¼ 4, on the
other hand, ηðaÞ ¼ ϱ4⟦n⊗4⟧, where −2η ≤ ϱ4 ≤ 2η is an
anisotropic viscosity, and the inequalities follow from the
second law of thermodynamics [20].
Lastly, in the absence of topological defects or other

singular features, the phase θ of the complex order
parameter is the only hydrodynamic variable arising from
the broken rotational symmetry, since jΨpj relaxes to its
equilibrium value in a finite time. In this case, Eq. (3c) can
be simplified in the form

Dθ

Dt
¼ Kp

γp
∇2θ þ ωxy − jHpj sin ðpθ − ArgHpÞ; ð8Þ

where the constants Kp and γp are related to Lp and Γp by

Kp ¼ p2jΨpj2
2

Lp; γp ¼ p2jΨpj2
2

Γp
−1; ð9Þ

respectively, and the complex function

Hp ¼ 2

pjΨð0Þ
p j

ðλp∂p−2Uþ νp∂
p mod 2Ubp=2cÞ; ð10Þ

with U ¼ ðuxx − uyyÞ=2þ iuxy, embodies the interplay
between p-atic order and flow and will be hereafter referred
to as the flow alignment field.
Together with a system-specific equation of state, relat-

ing pressure and density (e.g., P ¼ c2sρ, with cs the speed
of sound), Eqs. (3) and the stress tensors given above
govern the dynamics of a generic p-atic liquid crystal with

p ≥ 2, subject to arbitrary external forcing. The case p ¼ 1
requires a separate treatment and is discussed in Ref. [20].
Before illustrating specific examples of viscous flow in

p-atics, some remarks are in order. Equation (3c) implies
that local p-atic order, embodied in the tensorial field
Qp, evolves toward the free energy minimum, where Hp

vanishes, while simultaneously interacting with flow.
Contrary to assertions in earlier literature, however, this
interaction is not limited to the precession of the director n
in the vorticity field but includes couplings with the local
strain rate. Among these, the term proportional to λ̄p affects
exclusively the scalar order parameter jΨpj, whereas the
terms proportional to λp and νp also affect the local
orientation θ and can drive reorientations of the p-atic
director. In contrast with the cases of polar (i.e., p ¼ 1) and
nematic (i.e., p ¼ 2) liquid crystals, however, these cou-
plings depend on either derivatives or nonlinear powers of
the strain rate tensor and are, therefore, expected to become
important only at large shear rate or in rapidly spatially
varying flows.
With Eqs. (3) in hand, we can now investigate the effect of

a flow on p-atic order. To this end, we consider an
incompressible system subject to an externally imposed
shear flow, whose average velocity is given by hvi ¼ _ϵyex.
As demonstrated in Ref. [20], in the Stokesian limit (i.e.,
where inertial effects are negligible) and when ρKp=η2 ≪ 1,
a limit that applies extremely well to all known liquid
crystals, Eqs. (3) suitably supplemented by noise terms
required by the fluctuation-dissipation theorem at finite
temperature can be cast in a single linear equation for the
microscopic orientation ϑ, i.e.,

∂tϑþ _ϵy∂xϑ ¼ Deff∇2ϑ −
_ϵ

2
þ ξ: ð11Þ

The constant Deff ¼ Kp½1=γp þ 1=ð4ηÞ� is an effective
rotational diffusion coefficient, which further accounts for
the internal backflow resulting from spatial variations of
p-atic order, whereas ξ is a noise field, whose correlation
function is given by

hξðr; tÞξðr0; t0Þi ¼ 2kBT
γeff

δðr − r0Þδðt − t0Þ; ð12Þ

with γeff ¼ Kp=Deff . From the exact solution of Eq. (11)
[20], one can then compute the correlation function of the
complexp-atic order parameter in the form hψ�

pðrÞψpð0Þi ¼
exp½−p2gðrÞ�, with

gðrÞ ¼ kBT
2πKp

Z
∞

0

dτ
e−Gðτ;ϕÞða=lsÞ2 − e−Gðτ;ϕÞðjrj=lsÞ2

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 1

3
τ3

q ; ð13Þ

where
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Gðτ;ϕÞ ¼ 1 − 1
2
τ sin 2ϕþ 1

3
τ2sin2ϕ

2τð4þ 1
3
τ2Þ ; ð14Þ

ϕ ¼ arctan y=x, and ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Deff=_ϵ

p
, hereafter referred to as

the shear length scale, is the distance at which elastic and
hydrodynamic torques balance each other. Figure 2(a) (inset)
shows a plot of gðrÞ versus jrj=a for various a=ls values. For
a=ls → 0, corresponding to _ϵ → 0, this displays the char-
acteristic logarithmic growth of p-atics at equilibrium, i.e.,
gðrÞ ¼ kBT=ð2πKpÞ log jrj=a, from which ηp ¼ p2kBT=
ð2πKpÞ. By contrast, for a=ls > 0, gðrÞ does not growwith-
out bound but rather plateaus at large distances. This implies
that hψ�

pðrÞψpð0Þi converges to a finite value [Fig. 2(a)],
indicating that a shear flow of arbitrary finite shear rate
renders the orientational order of p-atic phases long ranged.
The corresponding order parameter jΨpj can be calculated
from the large distance limit of hψ�

pðrÞψpð0Þi and is given by

jΨpj ∼
�
a
ls

�
ηp=2

∼ _ϵηp=4: ð15Þ

In summary, in the presence of a simple shear flow, fluc-
tuations are anisotropic, as indicated by the ϕ dependence in
Eq. (14), but are suppressed at length scales larger than ls,

where the elastic torques, which alone would not suffice to
break rotational symmetry, are overcome by hydrodynamic
torques, resulting in the emergence of global alignment.
Although this analysis ignores the nonlinear terms in
Eqs. (3c), in Ref. [20] we show that these terms are irrelevant
in the renormalization group sense; i.e., they do not affect the
long distance, long time behavior of the system. Hence, the
results quoted above, in particular, Eq. (15), are valid at long
length scales in real systems.
As a second example of the hydrodynamic behavior of

p-atics, we consider a system confined within a two-
dimensional channel of infinite length along the x direction
and finite width d ≫ a along the y direction. At these large
length scales, we may ignore thermal fluctuations. The
upper wall is dragged at speed v0, in such a way that the so-
called Ericksen number Er ¼ ηv0d=Kp (see, e.g., Ref. [24]),
expressing the preponderance of an externally induced flow
with respect to the internal backflow, is large, so that the
velocity field is unaffected by the orientational order and,
therefore, just what one would obtain in this geometry in a
simple fluid; i.e., v ¼ _ϵyex, with _ϵ ¼ v0=a a constant shear
rate. Under these assumptions, a stationary configuration of
the average orientation θ is found for p ¼ 3; 5; 7… by
solving a simplified version of Eq. (8) given by

∂
2
yθ ¼ 1

2l2
s
; ð16Þ

with the shear length scale now given by ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kp=ðγp _ϵÞ

p
and whose solution with the boundary conditions θð0Þ ¼ θ0
and θðdÞ ¼ θ0 þ Δθ is

θðyÞ ¼ θ0 þ Δθ
y
d
þ yðy − dÞ

4l2
s

: ð17Þ

Thus, for odd p ≠ 1, the director rotates in such a way to
accommodate the vorticity of the imposed shear flow, as can
be seen in Fig. 3 in the case of triatics (p ¼ 3) and pentatics
(p ¼ 5). As we demonstrate in Ref. [20], and as is already
known in nematics [25], this solution is unstable to a time-
dependent or “tumbling” configuration, inwhich the director
periodically precesses across the channel while temporarily
disengaging from the boundary via a localized suppression of
p-atic order. The instability occurswhen theEricksen number
overcomes the threshold Erc ¼ ðη=γpÞðd=ξmÞ=ðp=2Þ, where
ξm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lp=jApj
p

is the p-atic coherence length. By contrast,
for p ¼ 4; 5; 6…, Eq. (8) reduces to

∂
2
yθ ¼ 1

2l2
s

�
1þ

�
_ϵ

_ϵc

�
p=2−1

sinp

�
θ −

π

4

��
; ð18Þ

with _ϵc a constant shear rate given by

_ϵc ¼ 2

�
pjΨð0Þ

p j
2νp

�1=ðp=2−1Þ
: ð19Þ
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FIG. 2. (a) Two-point p-atic correlation function versus dis-
tance for various shear rates expressed in terms of the dimension-
less ratio a=ls, with a a short distance cutoff and ls the shear
length scale, for ϕ ¼ 0. Inset: the connected correlation function
g ¼ gðrÞ [Eq. (13)] versus distance. (b) p-atic order parameter
jΨpj versus shear rate, expressed in terms of a=ls. Inset: the
asymptotic value gð∞Þ ¼ limjrj→∞gðrÞ.
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For small values of _ϵ, the p-atic director rotates across the
channel, and its configuration is again approximatively
described by Eq. (17). Unlike in the case of odd p values,
however, increasing the shear rate does not trigger a flow
tumbling instability. Conversely, the director aligns at an
angle that progressively approaches the asymptotic value
θp ¼ ðπ=4þ kπ=pÞmod 2π=p, where the integer k depends
on the anchoring of the p-atic director and can be selected in
such a way to minimize the energetic cost of the boundary
layer in proximity of the channel walls. This yields
θ4 ¼ �π=4, θ6 ¼ �π=12, θ8 ¼ �π=8, etc., with the sign
given by −sgn_ϵ. This is illustrated in Fig. 3 for the cases of
tetratics (i.e., p ¼ 4) and hexatics (i.e., p ¼ 6). The phe-
nomenon is known as “flow alignment” in the literature of

liquid crystals and was, so far, thought to occur exclusively in
polar liquid crystals (i.e., p ¼ 1) and nematics (i.e., p ¼ 2)
[23]. In contrast to these two cases, in which flow align-
ment occurs at arbitrarily small shear rates in the absence of

confinement (and as long as λ2=jΨð0Þ
2 j ≥ 1), for even p > 2,

flow alignment requires a high shear rate _ϵ and is, therefore,
expected to be nonuniversal. Specifically, at large shear rate,
higher-order powers of the strain rate can become comparable
to those in Eq. (3c), thus affecting the magnitude of both _ϵc
and θp in a system-dependent way.
In conclusion, in this Letter, we have revisited the

hydrodynamic p-atic liquid crystals in two dimensions,
with the goal of going beyond the classic theoretical picture
based on continuous O(2) rotational symmetry. Our
approach, build upon the p-atic tensor order parameter
Qp, which directly embodies the discrete rotational sym-
metry of p-atic phases, allowed us to reveal novel cou-
plings between p-atic order and flow, for which previous
theories could not account. These couplings leave a distinct
signature on the hydrodynamic of p-atics, such as the
possibility of flow alignment at high shear rates, even for
p > 2. Furthermore, using fluctuating hydrodynamics, we
have demonstrated that a shear flow of arbitrary finite shear
rate has the remarkable effect of turning quasi-long-ranged
orientational order, i.e., the hallmark of two-dimensional
liquid crystals at equilibrium, into long-ranged order. Our
theory could be experimentally tested on, e.g., freestanding
liquid crystal films [26–31]. It could also serve as a starting
point for the development of a hydrodynamic description of
epithelial tissues (see Ref. [32]), in light of the remarkable
link between epithelia and hexatic liquid crystals established
in Ref. [18] and experimentally confirmed in Ref. [19].
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