496 research outputs found

    Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Get PDF
    We investigate stellar metallicity distribution functions (MDFs), including Fe and α{\alpha}-element abundances, in dwarf galaxies from the Feedback in Realistic Environments (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles toward the average metallicity. This effect provides significantly better agreement with observed abundance distributions of dwarf galaxies in the Local Group, including the small intrinsic scatter in [α{\alpha}/Fe] vs. [Fe/H] (less than 0.1 dex). This small intrinsic scatter arises in our simulations because the interstellar medium (ISM) in dwarf galaxies is well-mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to within 0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.Comment: 19 pages, 13 figures, published in MNRA

    A High-Frequency Search for Pulsars Within the Central Parsec of SgrA*

    Get PDF
    We report results from a deep high-frequency search for pulsars within the central parsec of Sgr A* using the Green Bank Telescope. The observing frequency of 15 GHz was chosen to maximize the likelihood of detecting normal pulsars (i.e. with periods of ∼500\sim 500\,ms and spectral indices of ∼−1.7\sim -1.7) close to Sgr A*, that might be used as probes of gravity in the strong-field regime; this is the highest frequency used for such pulsar searches of the Galactic Center to date. No convincing candidate was detected in the survey, with a 10σ10\sigma detection threshold of ∼10μ\sim 10 \muJy achieved in two separate observing sessions. This survey represents a significant improvement over previous searches for pulsars at the Galactic Center and would have detected a significant fraction ($\gtrsim 5%) of the pulsars around Sgr A*, if they had properties similar to those of the known population. Using our best current knowledge of the properties of the Galactic pulsar population and the scattering material toward Sgr A*, we estimate an upper limit of 90 normal pulsars in orbit within the central parsec of Sgr A*.Comment: 10 pages, 7 figures, accepted for publication in the ApJ

    On the evolution of the radio pulsar PSR J1734−3333

    Get PDF
    Recent measurements showed that the period derivative of the ‘hig h-B’ radio pulsar PSR J1734−3333 is increasing with time. For neutron stars evolving with fallback disks, this rotational behavior is expected in certain phases of the long-term evolution. Using the same model as employed earlier to explain the evolution of anomalous X-ray pulsars and soft gamma-ray repeaters, we show that the period,the first and second period derivatives and the X-ray luminosity of this source can simultaneously acquire the observed values for a neutron star evolving with a fallback disk. We find that the required strength of the dipole field that can produce the source properties is in the range of 10^12 − 10^13 G on the pole of the neutron star. When the model source reaches the current state properties of PSR J1734−3333, accretion onto the star has not started yet, allowing the source to operate as a regular radio pulsar. Our results imply that PSR J1734−3333 is at an age of ∼3×10^4 −2×10^5years. Such sources will have properties like the X-ray dim isolated neutron stars or transient AXPs at a later epoch of weak accretion from the diminished fallback disk

    What drives the evolution of gas kinematics in star-forming galaxies?

    Get PDF
    One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z ∼ 2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion (σ intr ), SFR, and z in agreement with observations. In both observations and simulations, galaxies on the star-forming main sequence have median σ intr values that increase from z ∼ 0 to z ∼ 1–1.5, but this increasing trend is less evident at higher redshift. In the FIRE simulations, σ intr can vary significantly on time-scales of 100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate (M gas ). By cross-correlating pairs of σ intr, M gas, and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in σ intr tend to temporally coincide with increases in M gas and SFR

    Mean-flux Regulated PCA Continuum Fitting of SDSS Lyman-alpha Forest Spectra

    Full text link
    Continuum fitting is an important aspect of Lyman-alpha forest science, since errors in the estimated optical depths scale with the fractional continuum error. However, traditional methods of estimating continua in noisy and moderate-resolution spectra (S/N < 10 pixel^-1 and R ~ 2000, respectively, such as SDSS) using power-law extrapolation or the mean spectrum, achieve no better than ~ 10-15% RMS accuracy. To improve on this, we introduce mean-flux regulated/principal component analysis (MF-PCA) continuum fitting. In this technique, PCA fitting is carried out redwards of the quasar Lyman-alpha line in order to provide a prediction for the shape of the Lyman-alpha forest continuum. The slope and amplitude of this continuum prediction is then corrected using external constraints for the Lyman-alpha forest mean-flux. From tests on mock spectra, we find that MF-PCA reduces the errors to 8% RMS in S/N ~ 2 spectra, and 5. The residual Fourier power in the continuum is decreased by a factor of a few in comparison with dividing by the mean continuum, enabling Lyman-alpha flux power spectrum measurements to be extended to ~2x larger scales. Using this new technique, we make available continuum fits for 12,069 z>2.3 Lyman-alpha forest spectra from SDSS DR7 for use by the community. This technique is also applicable to future releases of the ongoing BOSS survey, which is obtaining spectra for ~ 150,000 Lyman-alpha forest spectra at low signal-to-noise (S/N ~ 2).Comment: 14 pages; 11 figures; submitted to AJ. Continua publicly available via anonymous FTP or Data Conservancy repositor

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure

    Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations

    Full text link
    Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields, level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud the raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous works. However, after correcting for observational incompleteness the simulation under-predicts these values. The discrepancy is likely due to the lack of disk fragmentation, as the simulation only resolves multiples that form either through capture or core fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function for the companions of >1 M⊙>1\,\mathrm{M_\odot} stars, however, accounting for observational incompleteness produces a flatter distribution similar to observations. We show that stellar multiplicity changes as the cloud evolves and anti-correlates with stellar density. This relationship also explains most multiplicity variations between runs, i.e., variations in the initial conditions that increase stellar density (increased surface density, reduced turbulence) decrease multiplicity. While other parameters, such as metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces no clear trend in stellar multiplicity properties.Comment: 20 pages, 21 figures, submitted to MNRA
    • …
    corecore