239 research outputs found

    Vascular endothelial growth factor signaling requires glycine to promote angiogenesis

    Get PDF
    Peripheral vascular occlusive disease (PVOD) is a common manifestation of atherosclerosis, and it has a high rate of morbidity. Therapeutic angiogenesis would re-establish blood perfusion and rescue ischemic tissue. Vascular endothelial growth factor (VEGF) induces angiogenesis and can potentially be used to treat ischemic diseases, yet in clinical trials VEGF has not fulfilled its full potential with side effects. Whether amino acids promote angiogenesis and the molecular mechanisms are largely unknown. Here we showed that (1) Glycine significantly promoted angiogenesis both in vitro and in vivo and effectively protected mitochondrial function. (2) Activation of glycine transporter 1(GlyT1) induced by VEGF led to an increase in intracellular glycine. (3) Glycine directly bounded to voltage dependent anion channel 1 (VDAC1) on the mitochondrial outer membrane and inhibited its opening. These original results highlight glycine as a necessary mediator in VEGF signalling via the GlyT1-glycine-mTOR-VDAC1 axis pathway. Therefore, the findings in this study are of significance providing new mechanistic insights into angiogenesis and providing better understanding of glycine function in angiogenesis, which may provide valuable information for development of novel therapeutic targets for the treatment of angiogenic vascular disorders

    Polyacetylenes from Sardinian Oenanthe fistulosa: A Molecular Clue to risus sardonicus

    Get PDF
    An investigation of Oenanthe fistulosa from Sardinia afforded oenanthotoxin (1a) and dihydrooenanthotoxin (1b) from the roots and the diacetylenic epoxydiol 2 from the seeds. The absolute configuration of 1a and 1b was established as R by the modified Mosher's method, and the structure of 2 by chemical correlation with (+)-(3R,8S)-falcarindiol. Oenanthotoxin (1a) and dihydrooenanthotoxin (1b) were found to potently block GABAergic responses, providing a molecular rationale for the symptoms of poisoning from water-dropwort (Oenanthe crocata) and related plants. These observations bear relevance for a series of historical and ethnopharmacological observations on the identification of the Sardonic herb and the molecular details of the facial muscular contraction caused by its ingestion (risus sardonicus)

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning

    Full text link
    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation

    An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning

    Get PDF
    An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards

    Chronic lesion of corticostriatal fibers reduces GABAB but not GABAA binding in rat caudate putamen: an autoradiographic study

    No full text
    The significance of GABA as an inhibitory neurotransmitter in the mammalian brain is now firmly established with well-defined GABA ergic pathways having been documented (see 1). The receptors on which these processes impinge have also been extensively characterised. Present evidence indicates that GABA binds to two receptors, GABA A and GABAB, which can be differentiated pharmacologically by selective agonists and antagonists (2); (see 3). Moreover the events associated with receptor activation causes an increase in membrane conductance to CI- (4,5), GABAB site activation causes an increase in membrane K + conductance (6-10) or a decrease in Ca 2+ conductance (11-15). The coupling of GABAB receptors to K + and Ca 2+ channels, although apparently independent (16) both involve the activation of guanine nucleotide binding proteins in the ceil membrane (15, 17-24). GABAA and GABAB binding sites are also differentially distributed within the mammalian brain and spinal cord (26-29). Although the density of GABAB sites is generally greater than GABAB sites in regions where they coexist, there are certain areas in which the density of GABAB sites is at least 2-12 times higher than GABAA sites. These include the interpeduncular nucleus, globus pallidus, cerebellar molecular layer, superior colliculus dentate gyms molecular layer and lateral amygdaloid nucleus (28). The synaptic localization of GABAA and GABAB sites may also differ. GABAA receptors appear to be located predominantly on postsynaptic membranes although a presynaptic location cannot be ignored as suggested, for example, by the studies of Roberts and colleagues (30) and Curtis et al. (31) in spinal cord. Whilst GABAB receptors are also present postsynaptically many functional studies have shown their presence on presynaptic terminals (32-42) where their activation mediates a reduction in the evoked release of other neurotransmitters as well as that of GABA itself (43-45). Excitatory amino acid terminals of the corticostriatal pathway may be among these processes which possess GABAB receptors since baclofen can inhibit the release of L-aspartate and L-glutamate within the cerebral cortex (46) and presynaptic GABA B receptors have been reported in the striatum (47,48,32). Thus a decrease in GABAB binding might occur within the striatum after removal of the cortical input. The present study was performed to test this hypothesis using receptor autoradiography. The effect of chronic diazepam administration on the densities of GABAA and GABAB binding sites after cortical ablation was also examined to compare with our previous experiments on benzodiazepine binding under the same conditions (48).Peer Reviewe
    corecore