1,375 research outputs found

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Simulating the High Energy Gamma-ray sky seen by the GLAST Large Area Telescope

    Full text link
    This paper presents the simulation of the GLAST high energy gamma-ray telescope. The simulation package, written in C++, is based on the Geant4 toolkit, and it is integrated into a general framework used to process events. A detailed simulation of the electronic signals inside Silicon detectors has been provided and it is used for the particle tracking, which is handled by a dedicated software. A unique repository for the geometrical description of the detector has been realized using the XML language and a C++ library to access this information has been designed and implemented. A new event display based on the HepRep protocol was implemented. The full simulation was used to simulate a full week of GLAST high energy gamma-ray observations. This paper outlines the contribution developed by the Italian GLAST software group.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    Off-line radiometric analysis of Planck/LFI data

    Get PDF
    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features of LIFE is its ability to run the same data analysis codes both using ground test data and real flight data as input. The LIFE software suite has been successfully used during the RCA/RAA tests and the Planck Integrated System Tests. Moreover, the software has also passed the verification for its in-flight use during the System Operations Verification Tests, held in October 2008.Comment: Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    Full text link
    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments.Comment: 4 pages, 3 figures, Proc. of the 9th Int. Syposium "Frontiers of Fundamental and Computational Physics" (FFP9), (AIP, Melville, New York, 2008, in press

    The linearity response of the Planck-LFI flight model receivers

    Get PDF
    In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T12011

    Optimization of Planck/LFI on--board data handling

    Get PDF
    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.Comment: 51 pages, 13 fig.s, 3 tables, pdflatex, needs JINST.csl, graphicx, txfonts, rotating; Issue 1.0 10 nov 2009; Sub. to JINST 23Jun09, Accepted 10Nov09, Pub.: 29Dec09; This is a preprint, not the final versio

    Gleam: the GLAST Large Area Telescope Simulation Framework

    Full text link
    This paper presents the simulation of the GLAST high energy gamma-ray telescope. The simulation package, written in C++, is based on the Geant4 toolkit, and it is integrated into a general framework used to process events. A detailed simulation of the electronic signals inside Silicon detectors has been provided and it is used for the particle tracking, which is handled by a dedicated software. A unique repository for the geometrical description of the detector has been realized using the XML language and a C++ library to access this information has been designed and implemented.Comment: 10 pages, Late

    Planck-LFI radiometers tuning

    Get PDF
    "This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst" This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at http://dx.doi.org/10.1088/1748-0221/4/12/T12013

    Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit

    Get PDF
    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic
    • …
    corecore