7 research outputs found

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    A behavioral guard caste in a primitively eusocial orchid bee, Euglossa viridissima, helps defend the nest against resin theft by conspecifics

    No full text
    Defense castes are know from highly eusocial insects yet have rarely been described in social species with a small colony size. In nests of Euglossa viridissima, an orchid bee exhibiting primitively eusocial behavior, we recorded one subordinate female per nest to specialize in guarding in the presence of a dominant and a second subordinate who specialized in foraging. Guarding may have arisen as a response to cleptobiosis by conspecifics, as nests with a guard more successfully avoided intrusion and resin theft

    The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera)

    No full text
    International audienceDespite growing concerns over the impacts of agricultural pesticides on honey bee health, miticides (a group of pesticides used within hives to kill bee parasites) have received little attention. We know very little about how miticides might affect bee cognition, particularly in interaction with other known stressors, such as crop insecticides. Visual learning is essential for foraging bees to find their way to flowers, recognize them, and fly back to the nest. Using a standardized aversive visual conditioning assay, we tested how field exposure to three pesticides affects visual learning in European honey bees (Apis mellifera). Our pesticides were two common miticides, thymol in the commercial formulation ApiguardÂź and tau-fluvalinate in the formulation ApistanÂź and one neonicotinoid, imidacloprid. We found no effect of miticides alone, nor of field-relevant doses of imidacloprid alone, but bees exposed to both thymol and imidacloprid showed reduced performance in the visual learning assay
    corecore