146 research outputs found

    2008: Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age

    Get PDF
    [1] We use geochemical and isotope measurements on a 225-year old brain coral (Diploria labyrinthiformis) from the south shore of Bermuda (64°W, 32°N) to construct a record of decadal-to-centennial-scale climate variability. The coral was collected alive, and annual density bands visible in X radiographs delineate cold and warm seasons allowing for precise dating. Coral skeletons incorporate strontium (Sr) and calcium (Ca) in relative proportions inversely to the sea surface temperature (SST) in which the skeleton is secreted. Previous studies on this and other coral colonies from this region document the ability to reconstruct mean annual and wintertime SST using Sr/Ca measurements 18 O of seawater (dO w ), where dO w is proportional to sea surface salinity (SSS). We show in this study that mean annual and wintertime d 18 O of the carbonate (dO c ) are correlated to both SST and SSS, but a robust, quantitative measure of SSS is not found with present calibration data. In combination, however, the Sr/Ca and dO c qualitatively reconstruct lower salinities at the end of the Little Ice Age relative to modern day. Temperature changes agree with other records from the Bermuda region. Radiative and atmospheric forcing may explain some of the SST variability, but the scales of implied changes in SST and SSS indicate large-scale ocean circulation impacts as well

    Spatial and temporal robustness of Sr/Ca‐SST calibrations in Red Sea corals : evidence for influence of mean annual temperature on calibration slopes

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 443-456, doi:10.1029/2017PA003276.Sr/Ca ratios recorded in the aragonite skeleton of massive coral colonies are commonly used to reconstruct seasonal‐ to centennial‐scale variability in sea surface temperature (SST). While the Sr/Ca paleothermometer is robust in individual colonies, Sr/Ca‐SST relationships between colonies vary, leading to questions regarding the utility of the proxy. We present biweekly‐resolution calibrations of Sr/Ca from five Porites spp. corals to satellite SST across 10° of latitude in the Red Sea to evaluate the Sr/Ca proxy across both spatial and temporal scales. SST is significantly correlated with coral Sr/Ca at each site, accounting for 69–84% of Sr/Ca variability (P ≪ 0.01). Intercolony variability in Sr/Ca‐SST sensitivities reveals a latitudinal trend, where calibration slopes become shallower with increasing mean annual temperature. Mean annual temperature is strongly correlated with the biweekly‐resolution calibration slopes across five Red Sea sites (r2 = 0.88, P = 0.05), while also correlating significantly to Sr/Ca‐SST slopes for 33 Porites corals from across the entire Indo‐Pacific region (r2 = 0.26, P < 0.01). Although interannual summer, winter, and mean annual calibrations for individual Red Sea colonies are inconsistently robust, combined multicoral calibrations are significant at summer (r2 = 0.53, P ≪ 0.01), winter (r2 = 0.62, P ≪ 0.01), and mean annual time scales (r2 = 0.79, P ≪ 0.01). Our multicoral, multisite study indicates that the Sr/Ca paleothermometer is accurate across both temporal and spatial scales in the Red Sea and also potentially explains for the first time variability in Sr/Ca‐SST calibration slopes across the Indo‐Pacific region. Our study provides strong evidence supporting the robustness of the coral Sr/Ca proxy for examining seasonal to multicentury variability in global climate phenomena.Singapore Ministry of Education; National Research Foundation Singapore Grant Number: NRFF‐2012‐03; U.S. National Science Foundation Grant Number: OCE‐1031288; King Abdullah University of Science and Technology Grant Numbers: USA 00002, KSA 0001

    Diploastrea heliopora Sr/Ca and δ18O records from northeast Luzon, Philippines : an assessment of interspecies coral proxy calibrations and climate controls of sea surface temperature and salinity

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 32 (2017): 424–438, doi:10.1002/2017PA003098.The Indo-Pacific coral Diploastrea heliopora reveals regional multidecadal- to centennial- scale climate variability using coral carbonate δ18O (δ18Oc) as a combined proxy for sea surface temperature (SST) and sea surface salinity (SSS). However, to assess the coral's full potential in resolving climatic events, an independent SST proxy would be more advantageous. We examined both Sr/Ca and δ18O of Diploastrea against an adjacent Porites lobata core collected from northeast Luzon, Philippines. Winter Sr/Ca data from Diploastrea show a significant correlation to SST (r = −0.41, p < 0.05, (root-mean-square of the residual) RMSR = 0.81°C) and provide a proxy with similar sensitivity as Porites (r = −0.57, p < 0.05, RMSR = 0.62°C). An interspecies SST record is shown to be robust and used for a reconstruction of the Pacific Decadal Oscillation during boreal winter (r = −0.70, p = 0.02). While we were unable to generate a robust Diploastrea δ18O-SSS calibration at interannual timescale, the freshening trend toward the present, commonly observed in the region, is qualitatively captured in Diploastrea δ18O. Comparison with Porites δ18O and instrumental SSS records shows that the magnitude of freshening is consistent between coral species. Wet and dry season Porites δ18O provide support for the relative influence of El Niño–Southern Oscillation events and local precipitation to SSS variability at our site. The multiproxy, multispecies approach of this study further strengthens the evidence for Diploastrea as an alternate climate archive in the Indo-Pacific region and seals its potential in helping resolve less understood global-scale climate phenomena.National Research Foundation Singapore (NRF) Grant Number: NRF-RF2012-0

    Efficacy of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients with spinal symptoms

    Get PDF
    BACKGROUND: There are controversial results on the efficacy of the abandoned, intrathecal predominant methylprednisolone application in multiple sclerosis (MS) in contrast to the proven effectiveness in intractable postherpetic neuralgia. METHODS: We performed an analysis of the efficacy of the application of 40 mg of the sustained release steroid triamcinolone acetonide (TCA). We intrathecally injected in sterile saline dissolved TCA six times within three weeks on a regular basis every third day in 161 hospitalized primary and predominant secondary progressive MS patients with spinal symptoms. The MS patients did not experience an acute onset of exacerbation or recent distinct increased progression of symptoms. We simultaneously scored the MS patients with the EDSS and the Barthel index, estimated the walking distance and measured somatosensory evoked potentials. Additionally the MS patients received a standardized rehabilitation treatment. RESULTS: EDSS score and Barthel index improved, walking distance increased, latencies of somatosensory evoked potentials of the median and tibial nerves shortened in all MS patients with serial evaluation (p < 0.0001 for all variables). Side effects were rare, five patients stopped TCA application due to onset of a post lumbar puncture syndrome. CONCLUSIONS: Repeated intrathecal TCA application improves spinal symptoms, walking distance and SSEP latencies in progressive MS patients in this uncontrolled study. Future trials should evaluate the long-term benefit of this invasive treatment

    Effects of mental practice embedded in daily therapy compared to therapy as usual in adult stroke patients in Dutch nursing homes: design of a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mental practice as an additional cognitive therapy is getting increased attention in stroke rehabilitation. A systematic review shows some evidence that several techniques in which movements are rehearsed mentally might be effective but not enough to be certain. This trial investigates whether mental practice can contribute to a quicker and/or better recovery of stroke in two Dutch nursing homes. The objective is to investigate the therapeutic potential of mental practice embedded in daily therapy to improve individually chosen daily activities of adult stroke patients compared to therapy as usual. In addition, we will investigate prognostic variables and feasibility (process evaluation).</p> <p>Methods</p> <p>A randomised, controlled, observer masked prospective trial will be conducted with adult stroke patients in the (sub)acute phase of stroke recovery. Over a six weeks intervention period the control group will receive multi professional therapy as usual. Patients in the experimental group will be instructed how to perform mental practice, and will receive care as usual in which mental practice is embedded in physical, occupation and speech therapy sessions. Outcome will be assessed at six weeks and six months. The primary outcome measure is the patient-perceived effect on performance of daily activities as assessed by an 11-point Likert Scale. Secondary outcomes are: Motricity Index, Nine Hole Peg Test, Barthel Index, Timed up and Go, 10 metres walking test, Rivermead Mobility Index. A sample size of the patients group and all therapists will be interviewed on their opinion of the experimental program to assess feasibility. All patients are asked to keep a log to determine unguided training intensity.</p> <p>Discussion</p> <p>Advantages and disadvantages of several aspects of the chosen design are discussed.</p> <p>Trial registration</p> <p>ISRCTN27582267</p

    Monthly intravenous methylprednisolone in relapsing-remitting multiple sclerosis - reduction of enhancing lesions, T2 lesion volume and plasma prolactin concentrations

    Get PDF
    BACKGROUND: Intravenous methylprednisolone (IV-MP) is an established treatment for multiple sclerosis (MS) relapses, accompanied by rapid, though transient reduction of gadolinium enhancing (Gd+) lesions on brain MRI. Intermittent IV-MP, alone or with immunomodulators, has been suggested but insufficiently studied as a strategy to prevent relapses. METHODS: In an open, single-cross-over study, nine patients with relapsing-remitting MS (RR-MS) underwent cranial Gd-MRI once monthly for twelve months. From month six on, they received a single i.v.-infusion of 500 mg methylprednisolone (and oral tapering for three days) after the MRI. Primary outcome measure was the mean number of Gd+ lesions during treatment vs. baseline periods; T2 lesion volume and monthly plasma concentrations of cortisol, ACTH and prolactin were secondary outcome measures. Safety was assessed clinically, by routine laboratory and bone mineral density measurements. Soluble immune parameters (sTNF-RI, sTNF-RII, IL1-ra and sVCAM-1) and neuroendocrine tests (ACTH test, combined dexamethasone/CRH test) were additionally analyzed. RESULTS: Comparing treatment to baseline periods, the number of Gd+ lesions/scan was reduced in eight of the nine patients, by a median of 43.8% (p = 0.013, Wilcoxon). In comparison, a pooled dataset of 83 untreated RR-MS patients from several studies, selected by the same clinical and MRI criteria, showed a non-significant decrease by a median of 14% (p = 0.32). T2 lesion volume decreased by 21% during treatment (p = 0.001). Monthly plasma prolactin showed a parallel decline (p = 0.027), with significant cross-correlation with the number of Gd+ lesions. Other hormones and immune system variables were unchanged, as were ACTH test and dexamethasone-CRH test. Treatment was well tolerated; routine laboratory and bone mineral density were unchanged. CONCLUSION: Monthly IV-MP reduces inflammatory activity and T2 lesion volume in RR-MS

    Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation

    Get PDF
    BACKGROUND: Independent of efficacy, information on safety of surgical procedures is essential for informed choices. We seek to develop standardized methodology for describing the safety of spinal operations and apply these methods to study lumbar surgery. We present a conceptual model for evaluating the safety of spine surgery and describe development of tools to measure principal components of this model: (1) specifying outcome by explicit criteria for adverse event definition, mode of ascertainment, cause, severity, or preventability, and (2) quantitatively measuring predictors such as patient factors, comorbidity, severity of degenerative spine disease, and invasiveness of spine surgery. METHODS: We created operational definitions for 176 adverse occurrences and established multiple mechanisms for reporting them. We developed new methods to quantify the severity of adverse occurrences, degeneration of lumbar spine, and invasiveness of spinal procedures. Using kappa statistics and intra-class correlation coefficients, we assessed agreement for the following: four reviewers independently coding etiology, preventability, and severity for 141 adverse occurrences, two observers coding lumbar spine degenerative changes in 10 selected cases, and two researchers coding invasiveness of surgery for 50 initial cases. RESULTS: During the first six months of prospective surveillance, rigorous daily medical record reviews identified 92.6% of the adverse occurrences we recorded, and voluntary reports by providers identified 38.5% (surgeons reported 18.3%, inpatient rounding team reported 23.1%, and conferences discussed 6.1%). Trained observers had fair agreement in classifying etiology of 141 adverse occurrences into 18 categories (kappa = 0.35), but agreement was substantial (kappa ≥ 0.61) for 4 specific categories: technical error, failure in communication, systems failure, and no error. Preventability assessment had moderate agreement (mean weighted kappa = 0.44). Adverse occurrence severity rating had fair agreement (mean weighted kappa = 0.33) when using a scale based on the JCAHO Sentinel Event Policy, but agreement was substantial for severity ratings on a new 11-point numerical severity scale (ICC = 0.74). There was excellent inter-rater agreement for a lumbar degenerative disease severity score (ICC = 0.98) and an index of surgery invasiveness (ICC = 0.99). CONCLUSION: Composite measures of disease severity and surgery invasiveness may allow development of risk-adjusted predictive models for adverse events in spine surgery. Standard measures of adverse events and risk adjustment may also facilitate post-marketing surveillance of spinal devices, effectiveness research, and quality improvement

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum
    corecore