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Abstract The Indo-Pacific coral Diploastrea heliopora reveals regional multidecadal- to centennial- scale
climate variability using coral carbonate δ18O (δ18Oc) as a combined proxy for sea surface temperature
(SST) and sea surface salinity (SSS). However, to assess the coral’s full potential in resolving climatic events, an
independent SST proxy would be more advantageous. We examined both Sr/Ca and δ18O of Diploastrea
against an adjacent Porites lobata core collected from northeast Luzon, Philippines. Winter Sr/Ca data from
Diploastrea show a significant correlation to SST (r = �0.41, p < 0.05, (root-mean-square of the residual)
RMSR = 0.81°C) and provide a proxy with similar sensitivity as Porites (r =�0.57, p< 0.05, RMSR = 0.62°C). An
interspecies SST record is shown to be robust and used for a reconstruction of the Pacific Decadal Oscillation
during boreal winter (r = �0.70, p = 0.02). While we were unable to generate a robust Diploastrea δ18O-SSS
calibration at interannual timescale, the freshening trend toward the present, commonly observed in the
region, is qualitatively captured in Diploastrea δ18O. Comparison with Porites δ18O and instrumental SSS
records shows that the magnitude of freshening is consistent between coral species. Wet and dry season
Porites δ18O provide support for the relative influence of El Niño–Southern Oscillation events and local
precipitation to SSS variability at our site. The multiproxy, multispecies approach of this study further
strengthens the evidence for Diploastrea as an alternate climate archive in the Indo-Pacific region and seals
its potential in helping resolve less understood global-scale climate phenomena.

1. Introduction

The relatively short length of observational climate records, particularly in the tropics, limits our understand-
ing of the natural drivers of long-term climate variability and our ability to constrain future changes [Gagan
et al., 2000; Lough, 2004, 2010]. Paleoclimate proxy reconstructions provide a means to extend climate data
prior to both instrumental records and anthropogenic influences [Dunbar and Cole, 1999; Gagan et al., 2000].

Tropical massive corals are a key source of paleoclimate records [Dunbar and Cole, 1999; Gagan et al., 2000;
Felis and Patzold, 2004; Lough, 2010]. Coral skeletons incorporate isotopic and geochemical tracers, which
vary based on the environment, allowing for subannual reconstruction of climate parameters such as sea
surface temperature (SST) and sea surface salinity (SSS) [Dunbar and Cole, 1999; Gagan et al., 2000]. Visible
banding in coral X-radiographs reflect changes in climate systems including El Niño–Southern Oscillation
(ENSO), Asian Monsoon, and ocean circulation [Druffel, 1997; Dunbar and Cole, 1999; Gagan et al., 2000;
Felis and Patzold, 2004; Grottoli and Eakin, 2007].

Two of the most extensively used geochemical tracers are the ratios of Sr/Ca and δ18O [Druffel, 1997; Dunbar
and Cole, 1999; Eakin and Grottoli, 2006]. Coral Sr/Ca is an exceptional paleothermometer where the elemen-
tal ratio of strontium-to-calcium is inversely related to the SST in which a coral grew [Smith et al., 1979; Beck
et al., 1992; Alibert and McCulloch, 1997]. Coral δ18O is influenced by both SST variations and the δ18O of the
ambient seawater, which is a function of the hydrological balance between evaporation, precipitation, runoff,
and water mass advection [Dunbar and Wellington, 1981; Gagan et al., 1994; Linsley et al., 2004; Lough, 2010;
Dassié et al., 2014]. Sr/Ca and δ18Omeasurements when combined allow for isolation of SSS [e.g., Gagan et al.,
1998; Hendy et al., 2002; Ren et al., 2003; Correge et al., 2004; Kilbourne et al., 2004; Linsley et al., 2004; Shen et al.,
2005; Cahyarini et al., 2008; Felis et al., 2009; Nurhati et al., 2011].
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Porites lobata/lutea species are the most targeted massive coral for reconstructing climate variability [e.g.,
Dunbar and Cole, 1999; Gagan et al., 2000; Sadler et al., 2014]. However, few (n < 20) Porites-based proxy
records extend beyond the past 200 years in the Indo-Pacific [Gagan et al., 2000; Lough, 2004, 2010;
Corrège, 2006; Grottoli and Eakin, 2007; Tierney et al., 2015]. In addition, most of these records are based on
a single core where nonclimatic influences such as vital and kinetic effects or bleaching events may be
difficult to detect and may compromise the quality of the geochemical record [McConnaughey, 1989b;
Lough, 2004, 2010; Suzuki et al., 2003]. Hence, replication of coral geochemical records is important in discri-
minating localized nonclimatic influences from regional climatic signals [Lough, 2004; DeLong et al., 2007,
Dassié et al., 2014].

Diploastrea heliopora, common in the Indo-Pacific region [Veron, 2000], offers an alternative resource for
paleoclimate studies. Due to extension rates of 2 to 6 mm/yr, roughly half that of Porites lobata, Diploastrea
cores contain approximately 2 to 3 times longer temporal coverage than a similarly sized Porites core
[Watanabe et al., 2003; Bagnato et al., 2004, 2005]. Diploastrea’s dense skeletons are resistant to boring organ-
isms, grazing fish, and damaging crown-of-thorns starfish [Veron, 2000] supporting a longer life span (i.e.,
>800 years) [Bagnato et al., 2004]. Limited studies on Diploastrea have demonstrated high reproducibility
relative to a Porites collected at the same site and across study sites within the same geographic region
(e.g., cores collected at New Caledonia and Alor, Indonesia [Watanabe et al., 2003], and cores collected at
Fiji Islands [Bagnato et al., 2004; Dassié and Linsley, 2015]). Therefore, utilizing Diploastrea as a climate archive
to replicate and extend Porites-based records will help improve reconstructions of long-term regional
climate variability.

Inherent to Diploastrea’s slow extension rates and complicated skeletal architecture are concerns regarding
the reliability of its geochemical records. Kinetic effects were observed in offsets between the coral δ18O
records of Diploastrea and Porites [Watanabe et al., 2003; Bagnato et al., 2004; Dassié and Linsley, 2015]. For
example, kinetic isotope disequilibrium models predict that slow growing corals should reach close to isoto-
pic equilibrium and thus have preferential enrichment of 18O compared to fast-growing corals
[McConnaughey, 1989a, 1989b]. Absolute values of Diploastrea δ18O are consistently enriched compared to
those of Porites with the offset equivalent to about ~1.69°C [Watanabe et al., 2003; Bagnato et al., 2004;
Dassié and Linsley, 2015]. However, themean δ18O offset was considered small, likely because while extension
is slow, Diploastrea has high calcification rates leading to high skeletal bulk density [Watanabe et al., 2003].
Consequently, recognition of kinetic effects is crucial in evaluating the accuracy of isotopic reconstructions
[McConnaughey, 1989a; Guilderson and Schrag, 1999].

Another factor that may influence the geochemistry of corals is skeletal architecture. Diploastrea corallites
have a straight inner mesh-like structure called the columella, surrounded by denser teeth-like radial struc-
tures called the septa. Based on previous studies, isotopic offsets from simultaneous subsampling of both
columella and septa could reach up to 0.5‰ difference which may lead to erroneous climate reconstructions
as these skeletal materials are deposited at different times throughout their growth [Watanabe et al., 2003;
Bagnato et al., 2004; Damassa et al., 2006]. Experiments on subsampling Diploastrea exclusively on either part
favored reconstructions from the columella as it yielded more robust interannual records [Watanabe et al.,
2003; Bagnato et al., 2004; Damassa et al., 2006]. Exclusive sampling of the columella at 0.5 mm intervals to
yield bimonthly records was found to be the optimal temporal resolution given their growth rates of
~4 mm/yr, enough to capture the full annual δ18O cycle and minimizing the effects of any sampling artifacts
introduced either by the coral’s intricate skeletal architecture or slow extension [Dassié and Linsley, 2015].

While the above challenges in sampling Diploastrea are well constrained for its δ18O records, the reliability of
its Sr/Ca composition has not been thoroughly investigated. Here we further investigate the paleoutility of
both Sr/Ca and δ18O proxies in Diploastrea relative to an adjacent Porites, to evaluate the coral’s ability to
reconstruct regional climate behavior.

2. Coral Sampling and Analytical Methods
2.1. Core Sites and Sampling

Palaui Island (18.54°N, 122.15°E) lies along the northeastern coast of the Philippines facing the Pacific Ocean
(Figure 1). The island is surrounded by warm waters and receives rainfall throughout the year. Based on
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satellite-derived data products (See section 2.3 for details.), the average annual SST range here is 27.4°C to
28.8°C. The average annual rainfall is ~2000 mm (Philippine Atmospheric, Geophysical and Astronomical
Services Administration), whereas the mean annual salinity ranges from 33.9 to 34.7 practical salinity unit
(psu). At seasonal timescales, the amount of rainfall is controlled by the direction of the dominant
monsoon winds, such that northeasterly (southeasterly) monsoon winds, prevailing during boreal winter
(summer), bring in dry (wet) conditions [Chang et al., 2005]. At interannual and decadal timescales,
temperature and rainfall variability is primarily controlled by El Niño–Southern Oscillation (ENSO) and
Pacific Decadal Oscillation (PDO)-related changes in the temperature, position, and size of the Indo-Pacific
Warm Pool [Yan et al., 1992; Gagan et al., 2000; Lin et al., 2013].

Vertical cores of Diploastrea heliopora and Porites lobata, approximately 2 km apart, were collected from 4 to
5 m water depth off the coast of Palaui Islands in May 2012 (Figure 1). The cores were drilled using a pneu-
matic drill, and the coring holes were plugged with cement to protect the inner parts of the corals from
burrowing organisms. Following the procedures outlined in Bolton et al. [2014], the drilled cores were cleaned
with freshwater and subsequently cut along their maximum growth axes into 7 mm thick slabs. Prior to
subsampling and chemical analyses, each slab was cleaned thrice in an ultrasonic bath of deionized water
for 15 min to remove any surface contaminants. The cleaned slabs were oven dried at 50°C for a minimum
of 48 h. The dried slabs were then X-rayed to visualize the banding pattern and to delineate the major growth
axis along which subsamples were microdrilled (Figure S1 in the supporting information). The X-rays were
taken at 50 kV, 10 mA with a source-to-object distance of 1 m and an exposure time of <1 s at the
Diagnostic Imaging Lab, National University Hospital, Singapore.

Our Diploastrea slabs were subsampled for Sr/Ca and δ18O exclusively along the columella following previous
works [Watanabe et al., 2003; Bagnato et al., 2004; Damassa et al., 2006; Dassié and Linsley, 2015]. Due to the
porous structure of the columella, we set a manual drill press to a low speed of ~500 rpm to avoid any break-
age or sample contamination during sampling. The slabs were drilled with a 1mm diameter tungsten carbide
burr at 0.4 mm intervals at a constant sampling depth of 1 mm, yielding a sampling resolution of ~10 samples
per year. The subsamples from the Porites slabs were drilled at a similar sampling depth along its maximum

Figure 1. Coral colonies of Diploastrea heliopora and Porites lobata, approximately 2 km apart, were collected off the
coast of Palaui Island in May 2012. Palaui Island lies along the northeastern coast of the Philippines facing the Pacific
Ocean (inset).
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growth axis but on a wider interval of 0.5 mm (about 26 samples per year) and at faster drilling speed
of 1400 rpm.

2.2. Sr/Ca and δ18O Measurements

For Sr/Ca measurements, approximately 200 μg from each subsample was dissolved in 2 mL of 5% HNO3

overnight. Strontium and calcium were measured thrice per sample using an inductively coupled plasma-
optical emission spectrometry (Thermo iCAP 6000 Series) at the Earth Observatory of Singapore (EOS).
Solution standards were routinely measured to correct for instrument drift and matrix effects from varying
calcium concentrations [Schrag, 1999]. To evaluate measurement precision, bulk coral powder reference
material JCp-1 [Okai et al., 2001] with a consensus Sr/Ca value of 0.01932 ppm (±0.0002) or 8.838 mmol/
mol (±0.089) [Hathorne et al., 2013] was analyzed throughout each run. Repeat measurements of JCp-1
showed good reproducibility (0.019315 ± 0.00005 ppm, 1σ, relative standard deviation = 0.26%, n = 2125).

From the same subsample, δ18O analyses were performed at the Australian National University (ANU) and
EOS. At ANU, 150–200 μg samples were acidified with 105% H3PO4 at 90°C in an automated individual-
carbonate reaction Kiel device and the resulting CO2 gas was analyzed in a Finnigan MAT-251 isotope ratio
mass spectrometer (IRMS). At EOS, 40–90 μg samples were acidified with 105% H3PO4 at 70°C in an auto-
mated Kiel IV carbonate device coupled with a ThermoFisher MAT-253 IRMS. All isotopic measurements in
both labs were calibrated relative to Vienna Peedee belemnite using National Bureau of Standards (NBS)
19 (δ18O = �2.20‰) and NBS 18 (δ18O = �23.2‰) [Stichler, 1995]. The reproducibility of NBS 19 is
±0.04‰ (1σ, n = 165) at ANU and ±0.03‰ (1σ, n = 10) at EOS. We also used two standards to cross calibrate
the instruments in both laboratories, and results show no measureable offsets between laboratories or
against published values. In addition, Estremoz, Carrara, and TSF standards were routinely measured at
EOS yielding the following average values and errors: δ18OEstremoz = �5.956 ± 0.08‰;
δ18OCarrara = �1.938 ± 0.05‰; δ18OTSF = �2.281 ± 0.07‰ (total of all standards, n = 688).

2.3. Data Sources

In the absence of in situ SST measurements in the study area, monthly 1° by 1° grid resolution (1° ≈ 111 km)
SST data from the Integrated Global Ocean Services System Products Bulletin (IGOSS), also referred to as
Optimum Interpolation SST v.2 (http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/)
[Reynolds et al., 2002], were used for SST calibration over the 30 year period of 1982–2012. We chose this
SST data set for calibration and comparison, rather than, e.g., 4 km resolution advanced very high resolution
radiometer pathfinder v.5 [Kilpatrick et al., 2001], because IGOSS SST data cover a longer time period and are
more continuous.

Monthly gridded 0.25° by 0.25° resolution SSS data were acquired from Simple Ocean Data Assimilation
(SODA, http://apdrc.soest.hawaii.edu/dods/public_data/SODA/soda_pop2.2.4, [Carton and Giese, 2008]) and
monthly gridded 2.5° square resolution precipitation data from Global Precipitation Climatology Project
v.2.2 (GPCP, http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html) [Adler et al., 2003] covering the
same time period to investigate the relative influence of salinity in the coral δ18O record. We found that other
commonly used SSS data sets available for the tropical Pacific show opposite trends to the expected and
observed climatology over our study site [e.g., Delcroix et al., 2011] and have limited temporal coverage
(e.g., Aquarius, 2011 to present) [Lagerloef et al., 2008].

2.4. Chronology Development

Age-depthmodels for all cores were developed using the annual density bands and fine-tuned using the sea-
sonal cycles of Sr/Ca ratios in each core. Coral Sr/Ca profile minima, maxima, and inflection points were
aligned with their respective SST points each year using the Analyseries software [Paillard et al., 1996] to
anchor the age-depth model. The Sr/Ca depth series was then resampled into a monthly time series by linear
interpolation. The Sr/Ca-SST age model was similarly applied to the coral δ18O record, which was then inter-
polated at monthly resolution.

2.5. Determination of Extension Rates and Effects

The annual extension rates of each coral were measured along the distance of two consecutive Sr/Ca
maxima, which marks the start of each year, from the Sr/Ca age model. The extension rates were then
compared to their respective annual Sr/Ca and δ18O records to check for growth rate effects.
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3. Coral Sr/Ca and SST
3.1. Monthly Calibration

Least squares linear regressions of monthly Sr/Ca to IGOSS SST from 1982 to 2012 show significant inverse
relationship in both corals (Figure 2a). The regression equations are summarized in equations (1) and (2):

DiploastreaSr=Ca ¼ 10:657 ±0:050ð Þ–0:057 ±0:002ð Þ � SST °C
� �

r ¼ �0:86; r2 ¼ 0:74; p ≪ 0:0001; RMSR ¼ 0:86°C; n ¼ 365
(1)

PoritesSr=Ca ¼ 10:790 ±0:043ð Þ–0:068 ±0:002ð Þ � SST °C
� �

r ¼ �0:92; r2 ¼ 0:84; p ≪ 0:0001; RMSR ¼ 0:61°C; n ¼ 365
(2)

where root-mean-square of the residual (RMSR) measures the difference between the instrumental and
reconstructed SST.

Diploastrea Sr/Ca values are consistently higher than Porites Sr/Ca (Figure 2a) as detected in Bagnato et al.
[2004] and Correge et al. [2004] (Table 1). This interspecies offset is similarly observed in other paired
Diploastrea-Porites studies [e.g., Watanabe et al., 2003; Bagnato et al., 2004] (Table 1) investigating δ18O as
dsiscussed later. The offsets are suspected to result from kinetic effects [McConnaughey, 1989a, 1989b; de
Villiers et al., 1994; Cohen et al., 2001; Watanabe et al., 2003; Bagnato et al., 2004]. Our mean Sr/Ca offset is
~0.182 mmol/mol or equivalent to ~2.6°C calculated using our Porites calibration slope, 0.068 mmol/
mol °C�1 (equation (2)). This value is comparable with mean offsets estimated from Diploastrea-Porites
Sr/Ca from Alor, Indonesia, and New Caledonia (e.g., ~0.135 mmol/mol or ~2.2°C) [Correge et al., 2004] but
higher compared with offsets reported from Fiji corals (e.g., 0.07 mmol/mol or 1.2°C) [Bagnato et al., 2004].
In the Fiji study, Diploastrea Sr/Ca was only sampled along the septa, which may explain its discrepancy rela-
tive to the other studies above. The direction in which Fiji Diploastrea Sr/Ca is offset from Porites Sr/Ca is also
different from what the kinetic equilibrium model predicts [McConnaughey, 1989a], such that Fiji Diploastrea
Sr/Ca values are lower than paired Porites Sr/Ca. The Fiji Diploastrea Sr/Ca samples were also taken from septal
material extending at an angle with respect to the major growth direction, which is along the columella
[Watanabe et al., 2003; Bagnato et al., 2004; Dassié and Linsley, 2015].

Our Diploastrea and Porites calibration slopes are slightly different, likely due to a greater Sr/Ca signal aliasing
when sampling the slow-growing Diploastrea (t test, df = 726, p < 0.0001). Nonetheless, both species gener-
ated SST reconstructions that are within error of each other (Figures 2b and 2c). Both calibration slopes are
within the range of slopes reported in other paired columella Diploastrea Sr/Ca records (e.g., �0.054 to
�0.062 mmol/mol °C�1) [Bagnato et al., 2004; Correge et al., 2004], other Porites-based studies from the same
region as our site (e.g., �0.042 to �0.061 mmol/mol °C�1) [Mitsuguchi et al., 1996; Shen et al., 1996; Sun et al.,
2005; Yu et al., 2005; Wei et al., 2000] and other slow-growing corals, i.e., less than 0.8 cm/yr (e.g., �0.045 to
�0.059 mmol/mol °C�1) [Cardinal et al., 2001; Goodkin et al., 2005, 2007; DeLong et al., 2011; Xu et al., 2015].
These results give indication that Diploastrea Sr/Ca has SST sensitivity similar to that of Porites.

3.2. Interannual Calibrations

To further evaluate the reliability of our proxy calibrations, we derived interannual Sr/Ca-SST relationships by
applying the monthly calibration equations (equations (1) and (2)) to 4 month summer (JJAS—June to
September) and 4month winter (DJFM—December to March) average Sr/Ca, which are based from themean
monthly climatology. We used the monthly calibration equations, instead of the statistically significant mean
annual or winter SST calibrations (Text S1 in the supporting information), to minimize reconstructions errors
that may result from the limited SST variability at interannual timescale at our site (i.e., mean annual SST range
of ~1.3°C). Using the mean annual and winter Sr/Ca-SST relationships (p < 0.04), for example, increase errors
to 55% to 86% more, respectively, compared to the monthly calibration equations as discussed below.

Diploastrea summer SST reconstructions show no relationship to instrumental summer SST (r = 0.17, p = 0.45).
Porites summer SST, on the other hand, significantly captures summer SST variability (r = �0.53, p = 0.003)
with an RMSR of 0.42°C, or equivalent to ~25% of mean annual summer range, 1.66°C. Diploastrea and
Porites winter SST reconstructions capture SST variability significantly with an RMSR of 0.81°C and 0.62°C,
respectively (rDiploastrea = �0.41, rPorites = �0.57, p < 0.05; Figure 3a). Winter RMSRs are equivalent to 40%
and 31% of the mean winter SST range of 2.03°C for Diploastrea and Porites, respectively.
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Building composite records from two or more individual corals minimizes local effects that are not climate
related [Lough, 2004; DeLong et al., 2007] and, thus, increases our confidence in reconstructing longer climate
records. Palaui Diploastrea and Porites Sr/Ca winter SST reconstructions are not statistically different with each
other (t test, df = 56, p = 0.50). This indicates that whileDiploastrea and Porites are distinctive species and have
contrasting growth rates and patterns, both are recording the same SST conditions in which they lived. For
this reason, we derived an interspecies composite record from the two coral time series. We averaged the
winter Diploastrea and Porites reconstructed SSTs, now referred to as the Palaui interspecies record, and
compared with IGOSS SST.

The Palaui interspecies winter SST record shows a higher regression coefficient and lowered RMSR value
than the individual calibrations over the same period (r = 0.57, p = 0.001, n = 10, RMSR = 0.59°C).
Compared with the instrumental mean annual winter SST, the interspecies winter SST reconstruction shows
greater variability (Figure 3b). The reconstructed winter SST has twice the range of the instrumental record.
In particular, the large range was due to higher coral Sr/Ca (colder) in 1986–1987 and 2005 to 2008 and
lower coral Sr/Ca (warmer) in 1990 to 1994.

One possible source of the observed discrepancy between the reconstructed winter SST and instrumental
record is ENSO years. The years contributing to greater SST variability correspond to El Niño events that
may introduce skeletal growth anomalies such as slowed growth or die-offs due to bleaching [e.g., Suzuki
et al., 2003]. In general, Porites Sr/Ca records show no significant correlation between annual extension rates
and Sr/Ca ratios at any season (r < 0.10, p > 0.50). The Porites coral extended ~1.3 cm/yr, which is within the
range of rates with minimal growth rate effects [McConnaughey, 1989a, 1989b; Felis and Patzold, 2004; Sadler
et al., 2014]. In contrast, Diploastrea, with extension rate of ~4 mm/yr, shows averaged annual and winter
Sr/Ca ratios that are significantly correlated to annual extension rates (Sr/Ca versus growth: annual
r = �0.46, winter r = �0.56, p < 0.04) with similar significance to SST correlation (Sr/Ca versus SST: annual
r = �0.36, winter r = �0.37, p < 0.04). We found, however, that the coral Sr/Ca anomalies are neither

Table 1. Palaui Diploastrea-Porites Mean Sr/Ca and δ18O Offsets

Mean Sr/Ca (mmol/mol) Mean δ18O (‰)

Diploastrea 9.04 �4.66
Porites lobata 8.86 �4.91
Interspecies offset 0.18 0.25
°C equivalent 2.6a 1.6b

aCalculated from our Porites Sr/Ca-SST calibration slope of 0.068 mmol/mol °C�1.
bCalculated from our Diploastrea δ18O-SST calibration slope of 0.16‰ °C�1.

Figure 2. SST calibrations and reconstructions. (a) Monthly Diploastrea (blue) and Porites (red) Sr/Ca ratios lineary regressed
against IGOSS SST. The regression results are highly correlated, r = �0.86 and r = �0.92 for Diploastrea and Porites,
respectively (both p ≪ 0.0001). (b) SST reconstruction from Diploastrea (blue), Porites (red), and IGOSS SST (black). IGOSS SST
is centered at 18.5°N, 122.5°E. (c) Coral SST anomalies from IGOSS SST, Diploastrea (blue circles) and Porites (red circles).
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consistent among ENSO events nor associated with unusual extension rates in each coral indicating that the
high variability is not caused by growth effects.

Another possible source is errors associated with conventional microsampling of our corals impacting the
resolution of our records through time and artificially dampening the calibration slope [Goodkin et al.,
2005, 2007; Maupin et al., 2008; Dassié and Linsley, 2015]. However, the possibility of sampling (or analytical)
errors as sources of discrepancies also disagrees with the directionally consistent interannual signals in both
corals (Figure 2c). A more plausible explanation of the discrepancy may lie in the spatial range each record is
able to resolve. Gridded SSTs average multiple observations over a large area (1° by 1°), and it is possible that
this grid misrepresents local SST experienced by the corals. The Palaui cores were collected on a shallow
coastal platforms where greater SST variability than the open ocean can be expected. The coral record shows
high variability both before and within the calibration period and still shows strong correlations to instrumen-
tal data, indicating support for local SST variations greater than regional variations. The above concerns may
imply an overestimation in the winter SST variability back in time, though relative variability compared to
present should be consistent. Nevertheless, the individual coral and overall means of the records are
consistent (26.3°C), and the trends are in good agreement with each other (r = 0.54, p = 0.01).

3.3. Decadal SST Trends

We compared our interspecies coral winter (DJFM) SST record to the Pacific Decadal Oscillation (PDO),
defined as the leading mode of SST anomalies over the North Pacific poleward of 20°N at decadal time-
scales [Mantua et al., 1997]. Prominent PDO variability is commonly detected in boreal winters [Felis
et al., 2010], as atmospheric circulation variability over the North Pacific is the strongest during this season
[Trenberth et al., 1998; Deser et al., 2004]. The Palaui interspecies winter SST record is significantly corre-
lated with the PDO index for DJFM months (http://research.jisao.washington.edu/pdo/PDO.latest)

Figure 3. (a) Winter SST reconstruction for Diploastrea (blue) and Porites (red) against IGOSS SST (dashed). Shaded areas
represent RMSRDiploastrea = 0.81°C and RMSRPorites = 0.62°C. (b) The winter interspecies record (black), derived by taking
the average of the two coral time series, shows higher regression coefficient (r = 0.57, p = 0.001) and lowered RMSR value
(0.59°C, gray shaded area) than the individual coral reconstructions.
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[Mantua et al., 1997] (r = �0.43,
p = 0.02, n = 30) over our calibration
period. The inverse correlation indi-
cates that warm (positive phase)
PDO events are characterized by
anomalously cool SSTs in the wes-
tern Pacific and in the central North
Pacific Ocean [Mantua et al., 1997;
Felis et al., 2010; Gedalof and Smith,
2001]. The coral records represent
regional winter SST variability in
the western tropical Pacific and the
PDO index represents SST anomalies
averaged over a larger area in the
North Pacific. Therefore, we aver-
aged 3 year bins in both time series
to suppress local high-frequency
variability in our coral SST recon-
structions and to enhance signal-
to-noise ratio in comparison to the
PDO without artificially increasing

the correlation coefficient. The correlation between the binned data is higher and remains statistically sig-
nificant even after reducing the degrees of freedom (r = �0.70, p = 0.02, n = 10). Coral winter SST corre-
lates to the interdecadal PDO index better than IGOSS SST data do at both timescales (IGOSS-PDO
rannual = �0.19, p = 0.32, n = 30; r3 yr_bin = �0.45, p = 0.19, n = 10).

Beyond the calibration interval (back to 1955), the correlation between the 3 year binned Palaui winter SST
and PDO index remains statistically significant (r = �0.56, p = 0.01, n = 19; Figure 4). Temporally, our winter
SST record reflects known PDO regime shifts. In particular, the well-known 1976–1977 PDO regime shift to
warm (positive) phase [e.g., Newman et al., 2016] is captured by our coral record as anomalously colder
winters in the region. The 1988–1989 and 1997–1998 shifts to cool (negative) PDO phases [e.g., Newman
et al., 2016] are likewise captured as positive excursions in our coral record. Compared with the only available
coral-based PDO reconstruction in the subtropical northwestern Pacific [e.g., Felis et al., 2010], our results are
of the same order of correlation at both annual and interannual timescales, i.e., rannual = 0.30 and r3 yr_run-

ning = 0.50 from Ogasawara coral Sr/Ca and U/Ca records. The PDO is one of the most significant climate phe-
nomena influencing climate and ocean circulation in the western Pacific region [Mantua et al., 1997; Newman
et al., 2016]. Our understanding of drivers and mechanisms of the PDO is limited, especially its link with tro-
pical climate [Gedalof and Smith, 2001; D’Arrigo et al., 2006; Newman et al., 2016]. We find that the endemic
Diploastrea corals have the ability to record interdecadal climate phenomena similar to Porites. In addition,
the interspecies approach of this study has demonstrated its advantage by generating more reliable
reconstructions. With Diploastrea’s longer lifespan than Porites, it has the potential to resolve centennial-scale
variability in this important climate system.

4. Coral δ18O and SSS
4.1. Monthly Calibration

Monthly Diploastrea coral carbonate δ18O (δ18Oc) records are positively correlated with SSS (r = 0.34,
p < 0.0001) and negatively correlated with SST (r = �0.62, p < 0.0001). Poritesmonthly δ18Oc shows statisti-
cally significant correlations to SSS (r = 0.67, p< 0.0001) and to SST (r =�0.66, p< 0.0001) with higher r values
compared to Diploastrea. The monthly δ18Oc records are also strongly correlated with their paired monthly
Sr/Ca values (Diploastrea r = 0.63 and Porites r = 0.61; p < 0.0001), which is expected as both proxies are a
function of SST (Figure S2). Additionally, monthly SODA SSS and IGOSS SST are correlated over the calibration
period (r = 0.51, p< 0.0001), indicating that they impact δ18Oc in opposite directions, serving to dampen the
seasonal δ18Oc signal.

Figure 4. Palaui interspecies winter SST record (black) is significantly corre-
lated to the Pacific Decadal Oscillation (dashed) over DJFM months at
annual and 3 year binned timescales (3 year binned data shown; r = �0.56,
p = 0.01, n = 19). Gray shaded area represents RMSR = 0.59°C based on the
interspecies winter SST calibration.
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To compare our data to the literature, we first calibrated our coral δ18Oc directly to SST. Our columellar
Diploastrea and Porites δ18Oc records yield an SST dependence of �0.16 and �0.14‰ °C�1, respectively.
This lies on the lower end of the range of calibration slopes reported for other columellar Diploastrea δ18Oc

studies, (e.g., �0.16 to �0.19‰ °C�1) [Watanabe et al., 2003; Bagnato et al., 2004; Dassié and Linsley, 2015]
and to typical Porites δ18O-SST sensitivity (e.g., �0.15 to �0.22‰ °C�1) [Gagan et al., 2000]; Lough, 2004;
Corrège, 2006]. This agrees with the instrumental data suggesting that our coral δ18Oc records should have
an attenuated seasonal signal due to the combined effects of SST and SSS.

The disequilibrium offsets we observed between Diploastrea and Porites Sr/Ca are also evident in their
δ18Oc records. The mean δ18O offset is ~0.25‰ or equivalent to 1.6°C using our Diploastrea calibration
slope and is comparable with offsets reported from Diploastrea-Porites δ18O pairs in Fiji (e.g., 0.31‰ or
1.7°C) [Bagnato et al., 2004] and Alor, Indonesia, and New Caledonia (e.g., 0.32‰ or 1.8°C) [Watanabe
et al., 2003] (Table 1).

4.2. Interannual Calibrations

Similar to our Sr/Ca data, we further evaluated our δ18Oc records at interannual timescales over the same cali-
bration period to better constrain the limits of our proxy calibration. The wet season in this region coincides
with boreal summer (JJAS), and the dry season coincides with winter (DJFM). Porites δ18Oc shows significant
relationships with SSS for both wet and dry seasons. Wet season Porites δ18Oc, is strongly correlated to wet
SSS (r = 0.60, p = 0.0006), but it is not correlated to either wet SST or Sr/Ca (p > 0.40, Figure S3b and
Table S1). Dry Porites δ18Oc is significantly correlated with both dry SST (r = �0.58, p = 0.0002) and SSS
(r = 0.48, p = 0.01) but not with its dry Sr/Ca pair (p > 0.20, Figure S3b). On the contrary, wet season
Diploastrea δ18Oc is correlated to neither wet SST (r = 0.24, p = 0.20) nor wet SSS (r = 0.03, p = 0.85) but is sig-
nificantly correlated to its Sr/Ca pair (r = 0.46, p = 0.01, Figure S3a and Table S1). Dry season Diploastrea δ18Oc

is not correlated to either SST or SSS nor to its paired Sr/Ca (r< 0.15, p> 0.50, Figure S3a). These results indi-
cate that SSS records from Poritesmay be isolated by examining δ18Oc during the wet and dry seasons sepa-
rately, as will be discussed later.

As previously described in the interannual Sr/Ca relationships, summer Diploastrea Sr/Ca is not correlated to
summer SST. One possible reason is the small summer SST range in Palaui, ~1.5°C, making it difficult to iden-
tify a significant relationship during this period. However, we were able to determine a significant summer
Sr/Ca-SST relationship for the adjacent Porites core, and therefore, the small summer mean SST range cannot
be the only explanation. If we consider the wet season, which is also coincident with the summer period,
Diploastrea δ18Oc is found to have no relationship with SSS, while the SSS range for this season is larger than
the dry SSS range (0.94 psu versus 0.73 psu). We would expect to determine a significant and more robust
relationship between wet δ18Oc and SSS than during the dry season, similar to what we have obtained for
our Porites record, but the relationship is absent.

Although skeletal extension rates may also impact Sr/Ca (see discussion in section 3.2), we found no relation-
ship between summer Diploastrea Sr/Ca and linear extension (r = �0.26, p = 0.16). However, we hypothesize
that similar to Diploria labyrinthiformis (a slow-growing coral from the tropical Atlantic), the summer growth
in Diploastrea extends quickly and is subsequently infilled by secondary calcification during the following
winter, mixing the Sr/Ca and δ18Oc signals [Cohen et al., 2004; Goodkin et al., 2005]. Hence, the full amplitude
of the annual cycle in Diploastrea δ18Oc may be attenuated and harder to resolve, a problem compounded by
conventional microsampling. Moreover, in places of low SSS range like our study site, i.e., annual range of
~0.66 psu, and where SST and SSS dampen the δ18Oc amplitude, both SST and SSS signals will be harder
to isolate from δ18Oc data. Therefore, Diploastrea δ18Oc may be more useful in places where SST and SSS sig-
nals combine to enlarge the δ18Oc amplitude, as previously investigated throughout the Pacific [Hughen et al.,
1999; Watanabe et al., 2003; Bagnato et al., 2004, 2005; Correge et al., 2004; Damassa et al., 2006; Dassié and
Linsley, 2015].

4.3. SSS Variability Using Porites δ18Oc

Annual and 3 year binned δ18Oc for the wet and dry seasons are statistically and significantly correlated to SSS
(equations (3) and (4) and Figure 5):
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Poritesδ18Oc annual wet&dry ¼ �33:776 ±3:033ð Þ þ 0:843 ±0:089ð Þ� SODA SSSannual wet&dry;

r ¼ 0:78; r2 ¼ 0:62; p < 0:0001; RMSR ¼ 0:22 psu; n ¼ 57
(3)

Poritesδ18Oc 3yr wet&dry ¼ �41:722 ±3:792ð Þ þ 1:075 ±0:111ð Þ� SODA SSS3year wet&dry;

r ¼ 0:93; r2 ¼ 0:86; p < 0:0001; RMSR ¼ 0:09 psu; n ¼ 18
(4)

where RMSR of 0.22 and 0.09 psu are equivalent to ~33% and ~14%, respectively, of the mean annual SSS
range, ~0.66 psu. The 3 year binned record has a higher correlation coefficient as a result of suppressing
mismatched high-frequency SSS variability that is expected from comparing a single data point to a large
spatial average.

The SSS reconstructions for the wet and the dry seasons show comparable correlation strength with SODA
SSS (r3 yr_wet = 0.69, p = 0.03 and r3 yr_dry = 0.73, p = 0.02; Figure 5), and the associated reconstruction errors
between seasons are consistent (RMSR ≈ 0.09 psu). However, a few anomalies are notable. The 3 year binned
wet season SSS reconstruction shows higher salinity estimates, ~0.14 psu, than SODA SSS for the period
1994–1996 (Figure 6a). The dry season reconstruction conversely shows large departures from SODA SSS
of about ~0.19 and ~0.15 psu for the periods 1988–1990 and 1997–1999, respectively (Figure 6b).

We compared our SSS reconstructions with satellite-derived precipitation data (GPCP) [Adler et al., 2003] and
the Southern Oscillation Index (SOI, https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/),
together with SODA SSS to assess the factors controlling our reconstructions. Over our calibration period,
the reconstructed SSS for both wet and dry seasons shows good agreement with the SOI (r3yr_wet = �0.82;
p = 0.007 and r3yr_dry =�0.74, p = 0.02, Figure 6c). The SOI is a measure of large-scale variability in air pressure
across the Pacific that changes during ENSO episodes and, thus, provides a good test of ENSO impacts on the
monsoon strength and fluctuations in the Intertropical Convergence Zone over our study site. A negative
(positive) SOI indicates El Niño (La Niña) phase. In the western Pacific, El Niño (La Niña) is characterized by
anomalously cooler (warmer) SSTs and drier (wetter) conditions leading to droughts (above normal rainfalls)
as the warm pool moves toward the central equatorial Pacific (western Pacific), together with atmospheric
convection and rainfall centers [Rasmusson and Carpenter, 1983; Ropelewski and Halpert, 1987]. The
1997–1999 period covers one of the strongest back-to-back El Niño-La Niña phase changes for the past
30 years. The wet season δ18Oc record for the 1997–1999 period captures the wet phase SODA SSS well
(Figure 6a), while the dry season δ18Oc anomaly reflects “wetter” (less dry) conditions (Figure 6b). The wetter
than average condition coincides well with SOI (Figure 6c) indicating that our site received above average

Figure 5. Three year binned Porites δ18Oc values for the combined wet (green) and dry (brown) seasons are statistically and
significantly correlated to SODA SSS (r = 0.93, p < 0.0001). δ18Oc values for the wet and dry seasons separately also show
strong correlations with SSS (r3yr_wet = 0.69, p = 0.03 and r3yr_dry = 0.73, p = 0.02).
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rainfall expected during strong La
Niña episodes. The strong La Niña in
1998–1999 developed during the
winter/dry months, explaining the
observed signal strength during
this season.

An offset in timing between mini-
mum salinity and precipitation may
explain some of the differences
between our reconstructions and
SODA SSS (Figure 6c). The years
1994–1996 in our reconstruction
show higher salinity estimates than
SODA SSS during the wet season
(Figure 6a). GPCP rainfall data show
that this period received one of the
least amounts of rainfall over our cali-
bration period that may not be ENSO
related. ENSO for these years is con-
sidered weak to moderate; thus,
impacts on rainfall variability may
be minimal.

4.4. Application of Calibration
Equation and Comparison
to SOI Variability

Beyond the calibration period of
1982–2012, the 3 year binned Porites
wet SSS reconstructions remained
significantly correlated with SODA
SSS when including data back to
1955 (r = 0.56, p = 0.015), allowing
for robust SSS reconstruction
(Figure 7a). However, the Porites dry
SSS to SODA SSS did not remain

significant (r = 0.14, p = 0.55, Figure 7b). The SOI is not correlated to wet SSS (r = �0.08, p = 0.75) but is
significantly correlated to dry SSS (r = �0.48, p = 0.04) (Figure 7b). These results may be the outcome of less
reliable SODA SSS data before ~1970s due to the limited number of observations [Delcroix et al., 2011] or may
indicate that salinity variability between seasons is governed by different factors.

Porites wet SSS generally tracks local salinity (Figure 7a). However, “drier” (less wet) excursions in the record,
e.g., 1958–1960, 1964–1966, and 1976–1978, not reflected in the SODA time series, may be explained by SOI.
These years are predominantly weak to moderate El Niño years (with the year 1965–1966 as one of the strong
El Niño events in the past ~65 years), resulting in drier conditions at our site. Porites dry SSS, on the other
hand, may record more regional changes in salinity based on its sustained relationship with SOI on longer
timescales (Figure 7b). The annual SOI averages are essentially a combined signal from the two seasonal
extremes, and therefore, defining each season separately may be more advantageous. ENSO onset begins
during the dry season. If SOI values are averaged for DJFM months and compared to our dry SSS reconstruc-
tion, the correlation strength between the time series becomes stronger (r = �0.64, p = 0.003).

While we are unable to generate a robust Diploastrea δ18Oc-SSS reconstruction for the wet and dry seasons,
long-term records indicate a freshening trend toward the present (Figure 8). Diploastrea δ18Oc has a decreas-
ing slope of�0.0174‰/yr (r = 0.81, p = 0.002) from the early 1950s to the present. If this is partly due towarm-
ing, we expect to see a significant increase in Diploastrea Sr/Ca and in the adjacent Porites record. Both coral
Sr/Ca records are essentially flat (mDiploastrea = 0.0008 mmol/yr and mPorites = 0.0007 mmol/yr); hence, the

Figure 6. (a) Wet season Porites SSS reconstruction (green) against SODA SSS
(gray). (b) Dry SSS reconstruction (brown) against SODA SSS (gray). (c)
Differences between the SSS reconstructions in Figures 6a and 6b may be
explained by changes in SOI (dashed lines), an indicator of ENSO events, and
rainfall patterns from GPCP (gray bars). Shaded areas represent
RMSR = 0.09 psu, based on the 3 year binned wet and dry season SSS
calibrations.
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Diploastrea δ18Oc trend is likely due to freshening. Porites wet SSS reconstructions and SODA SSS show a
freshening trend equivalent to ~0.007 and ~0.009 psu/yr. If we convert the slope of Diploastrea δ18Oc to
salinity using equation (4), it will result in a comparable magnitude of freshening of 0.016 (±0.00464) psu/yr.

Lower salinity toward the present is a common trend in the western and central Pacific [Cobb et al., 2003;
Delcroix et al., 2007; Gagan et al., 2000; Nurhati et al., 2009, 2011], pointing to the intensification of the hydro-
logical patterns [Cobb et al., 2003; Nurhati et al., 2009, 2011; Osborne et al., 2014] since the start of the twen-
tieth century as the cause. Freshening trends obtained from both coral and instrumental records have been
estimated to be on the order of 0.1 to 0.3 psu/decade [e.g., Delcroix et al., 2007] to up to 0.6 to 1.2 psu/century
[Nurhati et al., 2009, 2011]. Porites wet SSS and instrumental data have the same magnitude of freshening
approximately ~0.35 psu and ~0.30 psu, respectively, for the past six decades. The wetDiploastrea SSS record,
in contrast, shows a greater amount of freshening, ~0.85 psu, which likely arises from the uncertainties in the
Diploastrea calibrations as previously discussed.

Figure 7. (a) Wet season Porites SSS reconstruction back to 1955 is significantly correlated to SODA SSS observations
(r = 0.56, p = 0.015). (b) Dry season δ18Oc may be better at recording SOI at longer timescales (r = �0.64, p = 0.003).
Shaded areas represent RMSR = 0.09 psu, based on the 3 year binned wet and dry season SSS calibrations.

Figure 8. Long-term freshening trend observed from decreasing Diploastrea δ18Oc values.
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5. Conclusions

This study investigated a Diploastrea heliopora coral relative to an adjacent Porites from northeast Luzon
(Palaui), Philippines, to evaluate both Sr/Ca and δ18O paleoclimate proxies and Diploastrea’s ability to recon-
struct regional climate behavior. Sr/Ca from Diploastrea has only been used as a chronological marker in
previous studies [e.g., Bagnato et al., 2004, 2005]. Winter Sr/Ca data from Diploastrea are an excellent SST
proxy and have a similar sensitivity to an adjacent Porites core. The interspecies SST (averaged Diploastrea-
Porites SST) record reflects the PDO and allows for a reconstruction of long-term PDO variability.

Salinity variability for the past half century are qualitatively captured in the Palaui Diploastrea δ18Oc, showing
a freshening trend consistent with Porites δ18Oc, instrumental SSS, and coral-based records within the Indo-
Pacific region. However, a robust Diploastrea δ18Oc and SSS calibration at interannual timescales was not
achieved as a result of the competing SST and SSS influences dampening the δ18Oc signal and compounding
effects of continuing coral calcification during different seasons. Diploastrea δ18Oc should be useful in places
where there is high salinity range (mean annual salinity >~1.5 psu) and where SST and SSS signals combine
to enlarge the δ18Oc amplitude as previously investigated in the central and South Pacific regions.

Themultiproxy, multispecies approach of this study further strengthens justification for the use of Diploastrea
as an alternate climate archive in the Indo-Pacific region and demonstrates its potential in helping resolve
global-scale climate phenomena we poorly understand.
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