40,220 research outputs found
Space Applications of Solid State Luminescent Phenomena
Luminescent phenomena in interplanetary space and moon related to luminescent, thermoluminescent, and cathodoluminescent properties of terrestrial minerals and rock
Developments in quantitative luminescence techniques
Developments in quantitative luminescence technique
Charge dynamics in the half-metallic ferromagnet CrO\u3csub\u3e2\u3c/sub\u3e
Infrared spectroscopy is used to investigate the electronic structure and charge carrier relaxation in crystalline films of CrO2 which is the simplest of all half-metallic ferromagnets. Chromium dioxide is a bad metal at room temperature but it has a remarkably low residual resistivity (\u3c5 \u3eμΩ cm) despite the small spectral weight associated with free carrier absorption. The infrared measurements show that low residual resistivity is due to the collapse of the scattering rate at ω\u3c2000 \u3ecm-1. The blocking of the relaxation channels at low v and T can be attributed to the unique electronic structure of a half-metallic ferromagnet. In contrast to other ferromagnetic oxides, the intraband spectral weight is constant below the Curie temperature
Observations of Subarcsecond Bright Dots in the Transition Region above Sunspots with the Interface Region Imaging Spectrograph
Observations with the Interface Region Imaging Spectrograph (IRIS) have
revealed numerous sub-arcsecond bright dots in the transition region above
sunspots. These bright dots are seen in the 1400\AA{} and 1330\AA{} slit-jaw
images. They are clearly present in all sunspots we investigated, mostly in the
penumbrae, but also occasionally in some umbrae and light bridges. The bright
dots in the penumbrae typically appear slightly elongated, with the two
dimensions being 300--600 km and 250--450 km, respectively. The long sides of
these dots are often nearly parallel to the bright filamentary structures in
the penumbrae but sometimes clearly deviate from the radial direction. Their
lifetimes are mostly less than one minute, although some dots last for a few
minutes or even longer. Their intensities are often a few times stronger than
the intensities of the surrounding environment in the slit-jaw images. About
half of the bright dots show apparent movement with speeds of
10--40~km~s in the radial direction. Spectra of a few bright dots
were obtained and the Si~{\sc{iv}}~1402.77\AA{} line profiles in these dots are
significantly broadened. The line intensity can be enhanced by one to two
orders of magnitude. Some relatively bright and long-lasting dots are also
observed in several passbands of the Atmospheric Imaging Assembly onboard the
Solar Dynamics Observatory, and they appear to be located at the bases of
loop-like structures. Many of these bright dots are likely associated with
small-scale energy release events at the transition region footpoints of
magnetic loops.Comment: 5 figures, will appear in ApJ
Cooling of Sr to high phase-space density by laser and sympathetic cooling in isotopic mixtures
Based on an experimental study of two-body and three-body collisions in
ultracold strontium samples, a novel optical-sympathetic cooling method in
isotopic mixtures is demonstrated. Without evaporative cooling, a phase-space
density of is obtained with a high spatial density that should
allow to overcome the difficulties encountered so far to reach quantum
degeneracy for Sr atoms.Comment: 5 pages, 4 figure
Meter-scale spark X-ray spectrumstatistics
X-ray emission by sparks implies bremsstrahlung from a population of
energetic electrons, but the details of this process remain a mystery. We
present detailed statistical analysis of X-ray spectra detected by multiple
detectors during sparks produced by 1 MV negative high-voltage pulses with 1
s risetime. With over 900 shots, we statistically analyze the signals,
assuming that the distribution of spark X-ray fluence behaves as a power law
and that the energy spectrum of X-rays detectable after traversing 2 m of
air and a thin aluminum shield is exponential. We then determine the parameters
of those distributions by fitting cumulative distribution functions to the
observations. The fit results match the observations very well if the mean of
the exponential X-ray energy distribution is 86 7 keV and the spark X-ray
fluence power law distribution has index -1.29 0.04 and spans at least 3
orders of magnitude in fluence
- …