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Infrared spectroscopy is used to investigate the electronic structure and charge carrier relaxation in crystal-
line films of CrO2 which is the simplest of all half-metallic ferromagnets. Chromium dioxide is a bad metal at
room temperature but it has a remarkably low residual resistivity (,5 mV cm) despite the small spectral
weight associated with free carrier absorption. The infrared measurements show that low residual resistivity is
due to the collapse of the scattering rate atv,2000 cm21. The blocking of the relaxation channels at lowv
andT can be attributed to the unique electronic structure of a half-metallic ferromagnet. In contrast to other
ferromagnetic oxides, the intraband spectral weight is constant below the Curie temperature.
@S0163-1829~99!14929-4#

Chromium dioxide is one of few binary oxides that are
ferromagnetic metals. Acicular powders have long been used
in particulate media for magnetic recording, but key aspects
of the electronic structure of CrO2 remain unexplored. Its
resistivityrdc is unusual: the residual resistivityr0 can be as
small 5mV cm, but above 80 K,rdc becomes strongly tem-
perature dependent and exceeds 1000mV cm above the Cu-
rie temperatureTC5390 K,1,2 a value which is beyond the
Ioffe-Regel limit. Hence, CrO2 may be classified as a ‘‘bad
metal.’’3,4 Following the original paper by Schwarz,5 numer-
ous band structure calculations indicate that CrO2 is a half-
metallic ferromagnet with completely spin-polarized spin-up
electrons atEF and a wide gap in the spin-down density of
states~DOS!.4,6–10 Recently a 90% spin polarization atEF
has been measured in CrO2 using superconducting point con-
tact spectroscopy.11

Here we investigate the electronic structure and charge
dynamics in CrO2 by means of reflectance spectroscopy car-
ried out over the frequency range from 500 GHz to near
ultraviolet. Our experiments reveal an interband contribution
to the complex conductivity that is in accordance with a band
structure entailing a high degree of spin polarization of the
electronic states atEF . A half-metallic density of states im-
plies a temperature- and frequency-dependent intraband scat-
tering rate. The strong suppression of the scattering rate that
we observe asv, T˜0 is consistent with this notion of a
~partial! gap in the electronic DOS. We have also analyzed
the temperature dependence of the electronic spectral weight
(Ne f f). In contrast to other ferromagnetic oxides, such as the
manganites, we find no variation ofNe f f with temperature.

We measured the near-normal incidence reflectanceR(v)
of crystalline films of CrO2 grown on a TiO2 @110#
substrate.2 Films with thickness.5 mm were found to be
completely opaque throughout the experimental frequency
range 14–37 000 cm21 ~2 – 4600 meV!. Films were coated

in situ with gold or aluminum in the optical cryostat and the
spectrum of the metal-coated sample was used as a
reference.12 Experimental errors due to diffuse reflectance
are minimized with this procedure, allowing reliable absolute
values ofR(v) to be obtained. The complex conductivity
s(v)5s1(v)1 is2(v) was obtained fromR(v) using
Kramers-Kronig analysis. The uncertainty ofs(v) spectra
due to both low- and high-frequency extrapolations required
for Kramers-Kronig analysis are negligible in the frequency
range where the actual data exist.

Raw reflectance spectraR(v) measured atT510 K, 150
K, and 300 K are plotted in Fig. 1. Reflectance at all tem-
peratures gradually decreases with increasingv up to a
‘‘plasma minimum’’ atv.12 000 cm21 in accordance with
the room temperature data by Chase.13 Our specimens show
higher reflectance in the visible and near-ultraviolet ranges
than the values reported earlier.14 The far-infrared reflectance
is strongly temperature dependent:R(v) increases at lowT
by as much as 7% between 500 cm21 and 1000 cm21. The
temperature dependence ofR(v) is confined to relatively
low frequencies and vanishes atv.300024000 cm21. The
sharp peaks in the far-infrared part of the spectrum~357
cm21, 474 cm21, and 573 cm21) are due to optical phonons.

In Fig. 2 we plot the dissipative part of the optical con-
ductivity s1(v) at 300 K. From this spectrum one can easily
distinguish three major contributions to optical absorption:
~i! coherent response of free carriers seen as a sharp peak at
v.0, ~ii ! a plateau in mid- and near-infrared~1000–8000
cm21) where the conductivity is nearly frequency indepen-
dent, and~iii ! the region of interband absorption with an
onset atv.12 000 cm21. The plateau seen in mid-infrared
frequencies is not observed in the response of conventional
metals. This featureless absorption is commonly found in
conducting oxides15 and is usually attributed to strong inter-
action of the carriers with magnetic excitations. The most
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appropriate analysis in this case is in terms of a single-
component model where features~i! and~ii ! are attributed to
a single channel centered at zero frequency with a frequency-
dependent effective massm* (v) and scattering rate
1/t(v).16,17 However, close inspection of the conductivity
spectra in Fig. 2 reveals the presence of a weak maximum at
7000 cm21, indicating a contribution of an interband transi-
tion. An attempt in separating the zero-frequency absorption
channel from the mid-infrared absorption produced ambigu-
ous results. In all likelihood the mid-infrared response is a
combination of free carriers interacting with magnetic exci-
tations and interband absorption. Due to the apparent weak-
ness of the latter feature, we have chosen to present our
analysis in terms of a single-component model. However, we
will point out what effects the mid-infrared absorption will
have on our results when relevant.

To understand the origin of the interband absorption~iii !
it is instructive to define the effective spectral weight

Ne f f~V!5
120

p E
0

V

s1~v!dv. ~1!

Ne f f(V) is proportional to the number of carriers participat-
ing in the optical absorption up to a certain cutoff frequency
V, and has the dimension of frequency squared. Integration
of the conductivity up toV512 000 cm21—the frequency
at which we observe a clear onset of interband transitions—
provides only 20% of the spectral weight we measure when
V is extended up to our experimental limit of 37 000 cm21.
This is actually an upper limit since an unknown portion of
the integrated conductivity in the plateau region below
12 000 cm21 is due to intraband transitions, as discussed
above. The relatively small amount of the spectral weight
that can be attributed to coherent transport is consistent with

the notion that the Fermi energy in CrO2 is located in a
pseudogapat the center of a band~derived from both oxygen
p orbitals and chromiumdyz anddzx orbitals! with a strongly
depleted DOS~inset of Fig. 2!. The reduced DOS nearEF is
also seen in photoemission experiments which show a spec-
trum reminiscent of doped Mott-Hubbard insulators: most of
the spectral weight is located in the upper and lower Hub-
bard bands but a clear metal-like edge is seen atEF .18 The
first interband transition in the conductivity,E1, is attributed
to transitions across the pseudogap in the majority spin DOS.
The position of the peak at 16 000 cm21.2 eV is in excel-
lent agreement with the photoemission results which find a
separation of about 2 eV between peaks in the photoemission
spectra. A similar pseudogap is suggested by band structure
calculations.5,4,6–10

Another indication of the form of the DOS is provided by
spin-polarized point contact spectroscopy measurements
which find almost total spin polarization nearEF .11 The
nearly complete spin polarization implies a gap in the minor-
ity spin DOS. The resonanceE2 at v527 000 cm2153.35
eV is assigned to excitations across this gap. Uspenskii
et al.8 have used the local spin density approximation to cal-
culate the optical conductivity of CrO2. The result for the
minority spin channel is shown as a thin line in Fig. 2. The
calculated peak at 3.5 eV agrees very well with the location
of the resonanceE2. Thus we conclude that the measured
interband conductivity is in accordance with the half-metallic
electronic structure of CrO2.

The unique electronic structure of the half-metallic state
also has a significant impact on the low-energy charge dy-

FIG. 1. Reflectance of CrO2 at 10 K, 150 K, and 300 K. Far-
infrared reflectance is strongly temperature dependent and increases
by as much as 7% at 500 cm21. The inset shows the 300 K reflec-
tance over a broader energy scale.

FIG. 2. Top panel: the frequency-dependent conductivity at 300
K. Arrows show the frequencies of the interband transitions:E1

516 000 cm21 and atE2527 000 cm21. The thin line shows the
theoretical conductivity associated with the gap in the minority spin
DOS ~Ref. 8!. Inset: schematic diagram showing the density of
states in half-metallic CrO2 in the vicinity of the Fermi energy.
Characteristic energiesE152.0 eV, E253.35 eV, and
E350.06–0.25 eV are inferred from the infrared data as described
in the text. Bottom panel: the effective spectral weightNe f f(V)
obtained from the integration of the conductivity as described in the
text.
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namics. The low-frequency conductivity is shown in the top
panel of Fig. 3. The conductivity is extremely temperature
dependent. As the temperature is lowered the zero frequency
peak narrows and the maximum increases, causing a rapid
reduction of the dc resistivity at lowT.2,19 To clearly illus-
trate the magnitude of this effect the conductivity at 10 K
and 300 K are reploted in the inset of the top panel of Fig. 3
on a different scale. The cause of the dramatic temperature
dependence in the low-energy conductivity is most clearly
understood in terms of the frequency-dependent scattering
rate 1/t(v), which is a measure of the width of the zero-
frequency peak at a given frequency. Following the single-
component approach the spectra of 1/t(v) can be obtained
from the optical conductivity:

1/t~v!5
vpD

2

4p
ReS 1

s~v! D , ~2!

where the plasma frequencyvpD527 000 cm21 was esti-
mated from the integration ofs1(v) up to the frequency of
the onset of interband absorption at 12 000 cm21. This value
is to be taken as an upper limit due to the presence of the
weak feature at 7000 cm21. The bottom panel of Fig. 3
shows a logarithmic plot of 1/t(v) on the same frequency
scale as the conductivity. We note that the frequency depen-
dence of 1/t(v) is confined to energies,2000 cm21. In
this energy range the scattering rate is strongly suppressed as

the temperature is reduced. The inset in the bottom panel of
Fig. 3 shows that in the limitv˜0 the scattering rate drops
by two orders of magnitude between 300 K and 10 K.20 This
behavior of 1/t reflected in the radical narrowing of the zero-
frequency peak turns this ‘‘bad metal’’ at room temperature
into an excellent conductor at low temperatures. The collapse
of the scattering rate at low temperatures is consistent with
recent magnetoresistance measurements on films of
CrO2.21,22

It can be argued that the evolution of the 1/t(v) spectra
with temperature is a natural consequence of the half-
metallic DOS. Indeed the DOS sketched in the inset of Fig. 2
implies that atT50 spin-flip processes are forbidden forv
below the energyE3 separatingEF from the bottom of spin-
down band. This is because the final states of spin-down
orientation required for spin-flip scattering are absent in this
energy interval. Thus, half-metallic electronic structure pre-
cludes spin-flip scattering which is the dominant scattering
mechanism in ferromagnets.23,24 This can lead to a particu-
larly strong effect in CrO2 because the magnetic scattering
will be especially effective in this material, where there is an
on-site Hund’s rule coupling of thedyz ,dzx conduction elec-
tron and thedxy core spin. At low temperature spin-flip re-
laxation channels, including scattering on magnons or mag-
netic impurities such as Cr31, are completely prohibited for
v,E3. Nonmagnetic scattering can also be reduced analo-

FIG. 3. Top panel: real part of the conductivity in far-infrared and mid-infrared frequencies at 300 K, 150 K, and 10 K. The conductivity
narrows at low temperature so that the dc value is enhanced~a magnification of the far-infrared region in given in the inset!. Thin line in the
inset shows the Drude fit with ther55 mV cm determined with four-probe measurements and 1/t* 513 cm21. Bottom panel: spectra of
the frequency-dependent scattering rate at 300 K, 150 K, and 10 K all show a threshold atv.2000 cm21. Inset: the dramatic suppression
of 1/t(v˜0) at 10 K is illustrated.
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gous to the situation in high-Tc superconductors in the re-
gime where the normal-state pseudogap is opened.25,16 At
high temperature or high energy (v.E3) the spin-flip events
are no longer forbidden and the scattering rate increases.
From the spectra of 1/t(v) we estimate the value ofE3 to be
between 500 and 2000 cm21 (60̃ 250 meV!.

While the relaxation rate of the conducting carriers is
strongly temperature dependent, the intraband spectral
weight is nearly constant. We emphasize that any variations
of Ne f f(V) with temperature is confined to a frequency re-
gion comparable to 1/t. In Fig. 4 Ne f f(V) is plotted for
several different temperatures. The solid lines represent the
integration of both the coherent~i! and mid-infrared plateau
~ii ! parts of the conductivity. At low temperatures the spec-

tral weight is primarily acquired from the far-infrared fre-
quency range. As the temperature increases the broadening
of the zero-frequency peak causes the spectral weight to be
spread throughout the mid-infrared frequency range. Above
4000 cm21, Ne f f (V) is temperature independent. Referring
back to Fig. 2 we see that this limit is well below the onset of
interband transitions. Thus, we find that the intraband spec-
tral weight is constant at all temperatures. The inset of Fig. 4
showsNe f f(V54000 cm21) as a function of temperature
~solid circles!. This analysis has also been applied to just the
coherent part of the conductivity~Fig. 4, dashed lines!.26

Again we see thatNe f f(V54000 cm21) is independent of
temperature~triangles in inset of Fig. 4!.

Recently it has been suggested that CrO2 may be a self-
doped double-exchange ferromagnet.9 In other systems with
double-exchange coupling a strong correlation exists be-
tween the magnetization and intraband spectral weight.27 In
the inset of Fig. 4 we also plot the temperature-dependent
magnetization of CrO2 normalized to its saturation value.
While the magnetization changes significantly over the mea-
sured temperature range,Ne f f is constant. In contrast to the
behavior seen in other double-exchange ferromagnets, the
increased ordering of local moments seems to have little ef-
fect on the magnitude of the free carrier spectral weight in
CrO2.

In conclusion, we found that the signatures of the electro-
magnetic response of CrO2 include ~i! reduced spectral
weight of free carrier absorption suggestive of greatly de-
pleted electronic density of states atEF , ~ii ! interband tran-
sitions at 2 eV and 3.35 eV, and~iii ! suppression of the
scattering rate at lowT andv. These effects involving high-
energy interband absorption on the one hand and low-energy
charge dynamics on the other can be understood in terms of
the half-metallic nature of CrO2. In contrast to other ferro-
magnetic oxides showing strong spin polarization, the effec-
tive free carrier spectral weight is independent of the mag-
netization.
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