1,970 research outputs found
Landau diamagnetism revisited
The problem of diamagnetism, solved by Landau, continues to pose fascinating
issues which have relevance even today. These issues relate to inherent quantum
nature of the problem, the role of boundary and dissipation, the meaning of
thermodynamic limits, and above all, the quantum-classical crossover occasioned
by environment-induced decoherence. The Landau Diamagnetism provides a unique
paradigm for discussing these issues, the significance of which are
far-reaching. Our central result is a remarkable one as it connects the mean
orbital magnetic moment, a thermodynamic property, with the electrical
resistivity, which characterizes transport properties of materials.Comment: 4 pages, 1 figur
Domain Growth in Random Magnets
We study the kinetics of domain growth in ferromagnets with random exchange
interactions. We present detailed Monte Carlo results for the nonconserved
random-bond Ising model, which are consistent with power-law growth with a
variable exponent. These results are interpreted in the context of disorder
barriers with a logarithmic dependence on the domain size. Further, we clarify
the implications of logarithmic barriers for both nonconserved and conserved
domain growth.Comment: 7 pages, 4 figure
Zeno blocking of interplanar tunneling by intraplane inelastic scattering in layered superconductors: a generalized spin-boson analysis
Following an earlier proposal that the observed temperature dependence of the normal-state c-axis resistivity of oxide superconductors can be understood as arising from the inhibition of electron transport along the c axis due to in-plane incoherent inelastic scatterings suffered by the tagged electron, we consider a specific form for the interaction Hamiltonian. In this, the tagged electron is coupled to bosonic baths at adjacent planes (the baths at any two planes being uncorrelated) and is coupled also to the intraplane momentum-flip degree of freedom via the bath degrees of freedom. Thus our model Hamiltonian incorporates the earlier proposed picture that each in-plane inelastic scattering event is like a measurement of which plane the electron is in, and this, as in the quantum Zeno effect, leads to the suppression of interplane tunneling. In the present scenario it is the baths which bring about a coupling between the intraplane and interplane degrees of freedom. For simplicity we confine ourselves to dynamics in two adjacent planes and allow for two states only, as far as momentum flips due to scattering are concerned. In the case when the intraplane dynamics is absent, our model reduces effectively to the usual spin-boson model. We solve for the reduced tunneling dynamics of the electron using a non-Markovian master equation approach. Our numerical results on the survival probability of the electron in the initial plane show that the intraplane momentum flips lead to further inhibition of the interplane tunneling over and above the inhibition effected by pure spin-boson dynamics
Landau-Drude Diamagnetism: Fluctuation, Dissipation and Decoherence
Starting from a quantum Langevin equation (QLE) of a charged particle coupled
to a heat bath in the presence of an external magnetic field, we present a
fully dynamical calculation of the susceptibility tensor. We further evaluate
the position autocorrelation function by using the Gibbs ensemble approach.
This quantity is shown to be related to the imaginary part of the dynamical
susceptibility, thereby validating the fluctuation-dissipation theorem in the
context of dissipative diamagnetism. Finally we present an overview of
coherence-to-decoherence transition in the realm of dissipative diamagnetism at
zero temperature. The analysis underscores the importance of the details of the
relevant physical quantity, as far as coherence to decoherence transition is
concerned.Comment: 8 pages and 5 figure
Dissipative Diamagnetism -- A Case Study for Equilibrium and Nonequilibrium Statistical Mechanics of Mesoscopic Systems
Using the path integral approach to equilibrium statistical physics the
effect of dissipation on Landau diamagnetism is calculated. The calculation
clarifies the essential role of the boundary of the container in which the
electrons move. Further, the derived result for diamagnetization also matches
with the expression obtained from a time-dependent quantum Langevin equation in
the asymptotic limit, provided a certain order is maintained in taking limits.
This identification then unifies equilibrium and nonequilibrium statistical
physics for a phenomenon like diamagnetism, which is inherently quantum and
strongly dependent on boundary effects.Comment: 4 pages, no figure
Rotational Brownian motion on the sphere surface and rotational relaxation
The spatial components of the autocorrelation function of noninteracting
dipoles are analytically obtained in terms of rotational Brownian motion on the
surface of a unit sphere using multi-level jumping formalism based on Debye's
rotational relaxation model, and the rotational relaxation functions are
evaluated.Comment: RevTex, 4 pages, submitted to Chin. Phys. Let
Classical Langevin dynamics of a charged particle moving on a sphere and diamagnetism: A surprise
It is generally known that the orbital diamagnetism of a classical system of
charged particles in thermal equilibrium is identically zero -- the Bohr-van
Leeuwen theorem. Physically, this null result derives from the exact
cancellation of the orbital diamagnetic moment associated with the complete
cyclotron orbits of the charged particles by the paramagnetic moment subtended
by the incomplete orbits skipping the boundary in the opposite sense. Motivated
by this crucial, but subtle role of the boundary, we have simulated here the
case of a finite but \emph{unbounded} system, namely that of a charged particle
moving on the surface of a sphere in the presence of an externally applied
uniform magnetic field. Following a real space-time approach based on the
classical Langevin equation, we have computed the orbital magnetic moment which
now indeed turns out to be non-zero, and has the diamagnetic sign. To the best
of our knowledge, this is the first report of the possibility of finite
classical diamagnetism in principle, and it is due to the avoided cancellation.Comment: Accepted for publication in EP
Anomalous Rotational Relaxation: A Fractional Fokker-Planck Equation Approach
In this study we obtained analytically relaxation function in terms of
rotational correlation functions based on Brownian motion for complex
disordered systems in a stochastic framework. We found out that rotational
relaxation function has a fractional form for complex disordered systems, which
indicates relaxation has non-exponential character obeys to
Kohlrausch-William-Watts law, following the Mittag-Leffler decay.Comment: Revtex4, 9 pages. Paper was revised. References adde
Frequency Dependent Rheology of Vesicular Rhyolite
Frequency dependent rheology of magmas may result from the presence of inclusions (bubbles, crystals) in the melt and/or from viscoelastic behavior of the melt itself. With the addition of deformable inclusions to a melt possessing viscoelastic properties one might expect changes in the relaxation spectrum of the shear stresses of the material (e.g., broadening of the relaxation spectrum) resulting from the viscously deformable geometry of the second phase. We have begun to investigate the effect of bubbles on the frequency dependent rheology of rhyolite melt. The present study deals with the rheology of bubble-free and vesicular rhyolite melts containing spherical voids of 10 and 30 vol %. We used a sinusoidal torsion deformation device. Vesicular rhyolite melts were generated by the melting (at 1 bar) of an Armenian obsidian (Dry Fountain, Erevan, Armenia) and Little Glass Mountain obsidian (California). The real and imaginary parts of shear viscosity and shear modulus have been determined in a frequency range of 0.005–10 Hz and temperature range of 600°–900°C. The relaxed shear viscosities of samples obtained at low frequencies and high temperatures compare well with data previously obtained by parallel plate viscometry. The relaxed shear viscosity of vesicular rhyolites decreases progressively with increasing bubble content. The relaxation spectrum for rhyolite melt without bubbles has an asymmetric form and fits an extended exponent relaxation. The presence of deformable bubbles results in an imaginary component of the shear modulus that becomes more symmetrical and extends into the low-frequency/high-temperature range. The internal friction Q −1 is unaffected in the high-frequency/low-temperature range by the presence of bubbles and depends on the bubble content in the high-temperature/low-frequency range. The present work, in combination with the previous study of Stein and Spera (1992), illustrates that magma viscosity can either increase or decrease with bubble content, depending upon the rate of style of strain during magmatic flow
- …