221 research outputs found

    HTLV-1 Integration into Transcriptionally Active Genomic Regions Is Associated with Proviral Expression and with HAM/TSP

    Get PDF
    Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ∼5% of infected hosts. The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load (proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells with proviral integration sites within transcription units

    Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants

    Get PDF
    Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.Fil: Barney, Jacob N. Virginia Tech. Department of Plant Pathology, Physiology, and Weed Science; Estados UnidosFil: Tekiela, Daniel R. Virginia Tech. Department of Plant Pathology, Physiology, and Weed Science; Estados UnidosFil: Barrios Garcia Moar, Maria Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. CENAC-APN; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas-Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Hufbauer, Ruth A. Colorado State University. Department of Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology; Estados UnidosFil: Leipzig-Scott, Peter. Colorado State University. Department of Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology; Estados UnidosFil: Nuñez, Martin A. Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad del Comahue. INIBIOMA. Laboratorio de Ecotono; ArgentinaFil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biolóogicas; Chile. Institute of Ecology and Biodiversity (IEB); ChileFil: Pysek, Petr. The Czech Academy of Sciences. Institute of Botany. Department of Invasion Ecology; República Checa. Charles University in Prague. Faculty of Science. Department of Ecology; República ChecaFil: Viıtkov, Michaela. The Czech Academy of Sciences. Institute of Botany. Department of Invasion Ecology; República ChecaFil: Maxwell, Bruce D. Montana State University. Department of Land Resources and Environmental Sciences; Estados Unido

    Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection

    Get PDF
    Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV) integrates preferentially within active transcription units, whereas murine leukemia virus (MLV) integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN) coding region into HIV (to make HIVmIN) caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN) further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag) displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I–hypersensitive sites (i.e., +/− 1 kb), and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins

    Assessing the Permeability of Engineered Capillary Networks in a 3D Culture

    Get PDF
    Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs) that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs) or adipose-derived stem cells (AdSCs), much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal cell identity influences the functionality and physiologic relevance of engineered capillary networks

    Evaluation of risk of falls and orthostatic hypotension in older, long-term topical beta-blocker users

    Get PDF
    Background: Falls are a serious problem in the elderly, and have recently been described as cardiovascular-mediated side effects of beta-blocker eye drops. Therefore, we investigated the possible association between the long-term use of beta-blockers, prostaglandins and their combinations in eye drops, and falls, dizziness and orthostatic hypotension in older patients. Methods: All participants were long-term users of eye drops containing beta-blockers, prostaglandins or their combinations. They underwent a structured falls interview and blood pressure measurement for testing of orthostatic hypotension. The odds ratio for presence of orthostatic hypotension or a positive falls history according to use of beta-blocker eye drops was calculated with a binary logistic regression analysis. The main outcome measures were a positive falls history and the presence of orthostatic hypotension. Results: In total, 148 of 286 subjects participated. After adjustment for age, gender, and use of fall-risk-increasing drugs other than beta-blocker eye drops, we found no significant difference in fall risk [odds ratio (OR): 0.60; 95% confidence interval (CI): 0.268-1.327] between patients using ophthalmic beta-blockers or a combination of ophthalmic beta-blockers and prostaglandins, and patients using ophthalmic prostaglandins only. Although prevalence of orthostatic hypotension was higher in the beta-blocker group (OR: 1.67; 95% CI: 0.731-3.793) compared to the prostaglandin group, this was a non-significant difference. Conclusions: In our study, we did not find a significant association between long-term use of beta-blockers eye drops and falls, dizziness or orthostatic hypotension in older ophthalmic outpatients, compared to long-term use of prostaglandin eye drops

    Diversity of Protein and mRNA Forms of Mammalian Methionine Sulfoxide Reductase B1 Due to Intronization and Protein Processing

    Get PDF
    Background: Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney. Principal Findings: Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3′-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms. Conclusions: This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1

    Anesthesiologists' and surgeons' perceptions about routine pre-operative testing in low risk patients: application of the Theoretical Domains Framework to identify factors that influence physicians' decisions to order pre-operative tests

    Get PDF
    Background Routine pre-operative tests for anesthesia management are often ordered by both anesthesiologists and surgeons for healthy patients undergoing low-risk surgery. The Theoretical Domains Framework (TDF) was developed to investigate determinants of behaviour and identify potential behaviour change interventions. In this study, the TDF is used to explore anaesthesiologists’ and surgeons’ perceptions of ordering routine tests for healthy patients undergoing low-risk surgery. Conclusion We identified key factors that anesthesiologists and surgeons believe influence whether they order pre-operative tests routinely for anesthesia management for a healthy adults undergoing low-risk surgery. These beliefs identify potential individual, team, and organisation targets for behaviour change interventions to reduce unnecessary routine test ordering. Methods Sixteen clinicians (eleven anesthesiologists and five surgeons) throughout Ontario were recruited. An interview guide based on the TDF was developed to identify beliefs about preoperative testing practices. Content analysis of physicians’ statements into the relevant theoretical domains was performed. Specific beliefs were identified by grouping similar utterances of the interview participants. Relevant domains were identified by noting the frequencies of the beliefs reported, presence of conflicting beliefs, and perceived influence on the performance of the behaviour under investigation. Results Seven of the twelve domains were identified as likely relevant to changing clinicians’ behaviour about pre-operative test ordering for anesthesia management. Key beliefs were identified within these domains including: conflicting comments about who was responsible for the test-ordering (Social/professional role and identity); inability to cancel tests ordered by fellow physicians (Beliefs about capabilities and social influences); and the problem with tests being completed before the anesthesiologists see the patient (Beliefs about capabilities and Environmental context and resources). Often, tests were ordered by an anesthesiologist based on who may be the attending anesthesiologist on the day of surgery while surgeons ordered tests they thought anesthesiologists may need (Social influences). There were also conflicting comments about the potential consequences associated with reducing testing, from negative (delay or cancel patients’ surgeries), to indifference (little or no change in patient outcomes), to positive (save money, avoid unnecessary investigations) (Beliefs about consequences). Further, while most agreed that they are motivated to reduce ordering unnecessary tests (Motivation and goals), there was still a report of a gap between their motivation and practice (Behavioural regulation)

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior

    Accelerometer-based physical activity in a large observational cohort - study protocol and design of the activity and function of the elderly in Ulm (ActiFE Ulm) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large number of studies have demonstrated a positive effect of increased physical activity (PA) on various health outcomes. In all large geriatric studies, however, PA has only been assessed by interview-based instruments which are all subject to substantial bias. This may represent one reason why associations of PA with geriatric syndromes such as falls show controversial results. The general aim of the Active-Ulm study was to determine the association of accelerometer-based physical activity with different health-related parameters, and to study the influence of this standardized objective measure of physical activity on health- and disability-related parameters in a longitudinal setting.</p> <p>Methods</p> <p>We have set up an observational cohort study in 1500 community dwelling older persons (65 to 90 years) stratified by age and sex. Addresses have been obtained from the local residents registration offices. The study is carried out jointly with the IMCA - Respiratory Health Survey in the Elderly implemented in the context of the European project IMCA II. The study has a cross-sectional part (1) which focuses on PA and disability and two longitudinal parts (2) and (3). The primary information for part (2) is a prospective 1 year falls calendar including assessment of medication change. Part (3) will be performed about 36 months following baseline. Primary variables of interest include disability, PA, falls and cognitive function. Baseline recruitment has started in March 2009 and will be finished in April 2010.</p> <p>All participants are visited three times within one week, either at home or in the study center. Assessments included interviews on quality of life, diagnosed diseases, common risk factors as well as novel cognitive tests and established tests of physical functioning. PA is measured using an accelerometer-based sensor device, carried continuously over a one week period and accompanied by a prospective activity diary.</p> <p>Discussion</p> <p>The assessment of PA using a high standard accelerometer-based device is feasible in a large population-based study. The results obtained from cross-sectional and longitudinal analyses will shed light on important associations between PA and various outcomes and may provide information for specific interventions in older people.</p

    Lifestyle predicts falls independent of physical risk factors

    Get PDF
    Many falls occur among older adults with no traditional risk factors. We examined potential independent effects of lifestyle on fall risk. Not smoking and going outdoors frequently or infrequently were independently associated with more falls, indicating lifestyle-related behavioral and environmental risk factors are important causes of falls in older women. Physical and lifestyle risk factors for falls and population attributable risks (PAR) were examined. We conducted a 4-year prospective study of 8,378 community-dwelling women (mean age = 71 years, SD = 3) enrolled in the Study of Osteoporotic Fractures. Data on number of falls were self-reported every 4 months. Fall rates were calculated (# falls/woman-years). Poisson regression was used to estimate relative risks (RR). Physical risk factors (p ≤ 0.05 for all) included tall height (RR = 0.89 per 5 in.), dizziness (RR = 1.16), fear of falling (RR = 1.20), self-reported health decline (RR = 1.19), difficulty with Instrumental Activities of Daily Living (IADLs) (RR = 1.12, per item), fast usual-paced walking speed (RR = 1.18, per 2 SD), and use of antidepressants (RR = 1.20), benzodiazepines (RR = 1.11), or anticonvulsants (RR = 1.62). Protective physical factors (p ≤ 0.05 for all) included good visual acuity (RR = 0.87, per 2 SD) and good balance (RR = 0.85 vs. poor). Lifestyle predicted fewer falls including current smoking (RR = 0.76), going outdoors at least twice weekly but not more than once a day (RR = 0.89 and vs. twice daily). High physical activity was associated with more falls but only among IADL impaired women. Five potentially modifiable physical risk factors had PAR ≥ 5%. Fall interventions addressing modifiable physical risk factors with PAR ≥ 5% while considering environmental/behavioral risk factors are indicated
    corecore