892 research outputs found

    Influence of a Concurrent Exercise Training Intervention during Pregnancy on Maternal and Arterial and Venous Cord Serum Cytokines: The GESTAFIT Project

    Get PDF
    The aim of the present study was to analyze the influence of a supervised concurrent exercise-training program, from the 17th gestational week until delivery, on cytokines in maternal (at 17th and 35th gestational week, and at delivery) and arterial and venous cord serum. Fifty-eight Caucasian pregnant women (age: 33.5 +/- 4.7 years old, body mass index: 23.6 +/- 4.1kg/m(2)) from the GESTAFIT Project (exercise (n = 37) and control (n = 21) groups) participated in this quasi-experimental study (per-protocol basis). The exercise group followed a 60-min 3 days/week concurrent (aerobic-resistance) exercise-training from the 17th gestational week to delivery. Maternal and arterial and venous cord serum cytokines (fractalkine, interleukin (IL)-1 beta, IL-6, IL-8, IL-10, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha) were assessed using Luminex xMAP technology. In maternal serum (after adjusting for the baseline values of cytokines), the exercise group decreased TNF-alpha (from baseline to 35th week, p = 0.02), and increased less IL-1 beta (from baseline to delivery, p = 0.03) concentrations than controls. When adjusting for other potential confounders, these differences became non-significant. In cord blood, the exercise group showed reduced arterial IL-6 and venous TNF-alpha (p = 0.03 and p = 0.001, respectively) and higher concentrations of arterial IL-1 beta (p = 0.03) compared to controls. The application of concurrent exercise-training programs could be a strategy to modulate immune responses in pregnant women and their fetuses. However, future research is needed to better understand the origin and clearance of these cytokines, their role in the maternal-placental-fetus crosstalk, and the influence of exercise interventions on them

    Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    Full text link
    We have carried out extensive equilibrium molecular dynamics (MD) simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78<T<102o78 < T < 102 ^{\rm o}K, --in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stables in time. We find that below 90o90 ^{\rm o}K, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures. Figures with better resolution available upon request. Accepted for publication in Phys. Rev. E Dec. 1st issu

    History of optics: a modern teaching tool

    Get PDF
    The history of optics is a very rich field of science and it is possible to find many simple and significant examples of the application and success of the experimental method and therefore is a very good tool to transmit to the student the way science proceeds and to introduce the right spirit of critical analysis, building and testing of models, etc. Optical phenomena are specially well suited for this because in fact optical observations and experiments have made science advance in a crucial way in many different periods of history, because they are in many cases quite visual, quite simple in concept and it is very easy to produce experimental setups in classrooms. Also, the intrinsic multidisciplinary character of Optics, which is a subject that has historically influenced in a notorious way fields as art, philosophy, religion and cultural and social studies in general, provide a very wide frame that permits to apply these examples to many different auditories. We present here some reflections about the role that history of optics can play in teaching and show some real examples of its application during the many years that we have been employing it in the context of the Optics School of the Complutense University of Madrid, Spain

    Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability

    Three axis vector magnet set-up for cryogenic scanning probe microscopy

    Full text link
    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insertThis work was supported by Convocatoria Doctorados en el Exterior 568-2012 COLCIENCIAS, the Spanish MINECO (FIS2011-23488, MAT2011-27470-C02-02, CSD2009-00013), by the Comunidad de Madrid through program Nanofrontmag-CM (S2013/MIT-2850) and by Marie-Curie actions under the project FP7-PEOPLE-2013- CIG-618321. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship. We also acknowledge Banco Santander, COST MP1201. J.A. and C.M. acknowledge the FPI (BES- 2012-058600) and Juan de la Cierva (JCI-2011-08815) programs, respectivel

    A mid-infrared view of the inner parsecs of the Seyfert galaxy Mrk 1066 using CanariCam/GTC

    Get PDF
    We present mid-infrared (MIR) imaging and spectroscopic data of the Seyfert 2 galaxy Mrk 1066 obtained with CanariCam (CC) on the 10.4-m Gran Telescopio CANARIAS (GTC). The galaxy was observed in imaging mode with an angular resolution of 0.24 arcsec (54 pc) in the Si-2 filter (8.7 μm). The image reveals a series of star-forming knots within the central ∼400 pc, after subtracting the dominant active galactic nucleus (AGN) component. We also subtracted this AGN unresolved component from the 8–13 μm spectra of the knots and the nucleus, and measured equivalent widths (EWs) of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature which are typical of pure starburst galaxies. This EW is larger in the nucleus than in the knots, confirming that, at least in the case of Mrk 1066, the AGN dilutes, rather than destroys, the molecules responsible for the 11.3 μm PAH emission. By comparing the nuclear GTC/CC spectrum with the Spitzer/Infrared Spectrograph (IRS) spectrum of the galaxy, we find that the AGN component that dominates the continuum emission at λ < 15 μm on scales of ∼60 pc (90–100 per cent) decreases to 35–50 per cent when the emission of the central ∼830 pc is considered. On the other hand, the AGN contribution dominates the 15–25 μm emission (75 per cent) on the scales probed by Spitzer/IRS. We reproduced the nuclear infrared emission of the galaxy with clumpy torus models, and derived a torus gas mass of 2 × 10^5  M_⊙, contained in a clumpy structure of ∼2 pc radius and with a column density compatible with Mrk 1066 being a Compton-thick candidate, in agreement with X-ray observations. We find a good match between the MIR morphology of Mrk 1066 and the extended Paβ, Brγ and [O iii] λ5007 emission. This coincidence implies that the 8.7 μm emission is probing star formation, dust in the narrow-line region and the oval structure previously detected in the near-infrared. On the other hand, the Chandra soft X-ray morphology does not match any of the previous, contrary to what it is generally assumed for Seyfert galaxies. A thermal origin for the soft X-ray emission, rather than AGN photoionization, is suggested by the different data analysed here

    The Male Warrior Hypothesis: Testosterone-related Cooperation and Aggression in the Context of Intergroup Conflict

    Get PDF
    Indexación ScopusThe Male Warrior Hypothesis (MWH) establishes that men’s psychology has been shaped by inter-group competition to acquire and protect reproductive resources. In this context, sex-specific selective pressures would have favored cooperation with the members of one’s group in combination with hostility towards outsiders. We investigate the role of developmental testosterone, as measured indirectly through static markers of prenatal testosterone (2D:4D digit ratio) and pubertal testosterone (body musculature and facial masculinity), on both cooperation and aggressive behavior in the context of intergroup conflict among men. Supporting the MWH, our results show that the intergroup conflict scenario promotes cooperation within group members and aggression toward outgroup members. Regarding the hormonal underpinnings of this phenomenon, we find that body musculature is positively associated with aggression and cooperation, but only for cooperation when context (inter-group competition) is taken into account. Finally, we did not find evidence that the formidability of the group affected individual rates of aggression or cooperation, controlling for individual characteristics. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-019-57259-

    Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop (LRT2015), Seattle, March 201

    NEXT-100 Technical Design Report (TDR). Executive Summary

    Get PDF
    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.Comment: 32 pages, 22 figures, 5 table
    corecore