30 research outputs found

    Connective tissue anomalies in patients with spontaneous cervical artery dissection.

    Get PDF
    OBJECTIVE: To investigate the prevalence of connective tissue abnormalities in patients with spontaneous cervical artery dissections (sCeAD). METHODS: We systematically assessed clinically detectable signs of connective tissue aberration in a series of consecutive patients with sCeAD and of age- and sex-matched patients with ischemic stroke unrelated to CeAD (non-CeAD IS) by a standard examination protocol including 68 items, and performed extensive molecular investigation for hereditary connective tissue disorders in all patients with sCeAD. RESULTS: The study group included 84 patients with sCeAD (mean age, 44.5 ± 7.8 years; 66.7% men) and 84 patients with non-CeAD IS. None of the patients with sCeAD met clinical or molecular diagnostic criteria for established hereditary connective tissue disorder. Connective tissue abnormalities were detected more frequently in the group of patients with sCeAD than in the group of those with non-CeAD IS (mean number of pathologic findings, 4.5 ± 3.5 vs 1.9 ± 2.3; p < 0.001). Eighty-one patients (96.4%) in the sCeAD group had at least one detectable sign compared with 55 patients (66.7%) in the group with non-CeAD IS (p < 0.001). Skeletal, ocular, and skin abnormalities, as well as craniofacial dysmorphisms, were the clinical signs more strongly associated with sCeAD. Signs suggesting connective tissue abnormality were also more frequently represented in patients with sCeAD than in patients with traumatic CeAD (28.6%, p < 0.001; mean number of pathologic findings, 1.7 ± 3.7, p = 0.045). CONCLUSIONS: Connective tissue abnormalities are frequent in patients with sCeAD. This reinforces the hypothesis that systemic aberrations of the connective tissue might be implicated in the pathogenesis of the disease

    History of migraine and volume of brain infarcts: The italian project on stroke at young age (IPSYS)

    Get PDF
    BACKGROUND AND PURPOSE: Migraine has been shown to increase cerebral excitability, promote rapid infarct expansion into tissue with perfusion deficits, and result in larger infarcts in animal models of focal cerebral ischemia. Whether these effects occur in humans has never been properly investigated. METHODS: In a series of consecutive patients with acute ischemic stroke, enrolled in the setting of the Italian Project on Stroke at Young Age, we assessed acute as well as chronic infarct volumes by volumetric magnetic resonance imaging, and compared these among different subgroups identified by migraine status. RESULTS: A cohort of 591 patients (male, 53.8%; mean age, 37.5±6.4 years) qualified for the analysis. Migraineurs had larger acute infarcts than non-migraineurs (median, 5.9 cm3 [interquartile range (IQR), 1.4 to 15.5] vs. 2.6 cm3 [IQR, 0.8 to 10.1], P<0.001), and the largest volumes were observed in patients with migraine with aura (median, 9.0 cm3 [IQR, 3.4 to 16.6]). In a linear regression model, migraine was an independent predictor of increased log (acute infarct volumes) (median ratio [MR], 1.64; 95% confidence interval [CI], 1.22 to 2.20), an effect that was more prominent for migraine with aura (MR, 2.92; 95% CI, 1.88 to 4.54). CONCLUSION: s These findings reinforce the experimental observation of larger acute cerebral infarcts in migraineurs, extend animal data to human disease, and support the hypothesis of increased vulnerability to ischemic brain injury in people suffering migraine

    Clinical pregenetic screening for stroke monogenic diseases: Results from lombardia GENS registry

    Get PDF
    BACKGROUND AND PURPOSE: Lombardia GENS is a multicentre prospective study aimed at diagnosing 5 single-gene disorders associated with stroke (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, Fabry disease, MELAS [mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes], hereditary cerebral amyloid angiopathy, and Marfan syndrome) by applying diagnostic algorithms specific for each clinically suspected disease METHODS: We enrolled a consecutive series of patients with ischemic or hemorrhagic stroke or transient ischemic attack admitted in stroke units in the Lombardia region participating in the project. Patients were defined as probable when presenting with stroke or transient ischemic attack of unknown etiopathogenic causes, or in the presence of <3 conventional vascular risk factors or young age at onset, or positive familial history or of specific clinical features. Patients fulfilling diagnostic algorithms specific for each monogenic disease (suspected) were referred for genetic analysis. RESULTS: In 209 patients (57.4\ub114.7 years), the application of the disease-specific algorithm identified 227 patients with possible monogenic disease. Genetic testing identified pathogenic mutations in 7% of these cases. Familial history of stroke was the only significant specific feature that distinguished mutated patients from nonmutated ones. The presence of cerebrovascular risk factors did not exclude a genetic disease. CONCLUSIONS: In patients prescreened using a clinical algorithm for monogenic disorders, we identified monogenic causes of events in 7% of patients in comparison to the 1% to 5% prevalence reported in previous series

    Multiple deletions of mitochondrial DNA in a patient with periodic attacks of paralysis

    No full text
    In this study multiple deletions of mitochondrial genome were found in a patient presenting,with periodic attacks of paralysis. Morphological studies revealed mitochondrial abnormalities along with typical histopathological features of periodic paralysis. Southern blot and PCR analysis revealed multiple mtDNA deletions. Our patient could be affected by two unrelated diseases, idiopathic periodic paralysis and presymptomatic mitochondrial myopathy. Alternatively, mtDNA alterations and oxidative deficiency might express themselves phenotypically as periodic paralytic attacks, although this correlation has never been reported

    Critically ill patients: immunological evidence of inflammation in muscle biopsy

    No full text
    AIM AND METHOD:To verify whether muscle necrosis in critically ill patients could be due to an inflammatory process, we tested muscle biopsies from five intensive care patients with different inflammation-specific immunocytochemical markers (antibodies anti-class I major histocompatibility complex products (class I MHCP or HLA I), membrane attack complex (MAC), T lymphocytes helper-inducer (CD4), cytotoxic (CD8) and pan-B-lymphocytes). RESULTS:In three patients muscle biopsy showed class I MHCP positivity on the surface membrane of several groups of fibres, mainly perifascicular, and scattered microvascular deposits of MAC. In the other two patients muscle biopsy did not show class I MHCP and MAC positivity. CONCLUSION:Our results suggest that inflammation may be a component of muscle damage in some critically ill patients

    Mitochondrial myopathy: correlation between oxidative defect and mitochondrial DNA deletions at single fiber level

    No full text
    In situ hybridization combined with immunohistochemical techniques has been applied to study patients affected by mitochondrial myopathies with large mitochondrial (mt)DNA deletions. All patients' muscle biopsies showed ragged red fibers (RRFs) and cytochrome oxidase (COX) deficiency. Two digoxygenin-labeled, polymerase chain reaction (PCR)-amplifed DNAs were used as probes. One probe was designed to hybridize only with wild-type mtDNAs, while the other recognized both wild-type and deleted mtDNAs. Concomitant immunocytochemical analysis using antibodies against subunits II, III, (encoded by mtDNA) and IV (encoded by nuclear DNA) of COX was carried out. In our patients deleted mtDNAs are overexpressed in COX-negative RRFs, while wild-type mtDNAs are decreased in the same fibers. Immunohistochemistry studies show that COX IV is overexpressed in RRFs and that COX II and COX III subunits are still present. Deleted mtDNAs are spatially segregated in muscle fibers, where they interfere with the local population of normal mitochondrial genomes, causing a regional deficiency of the mitochondrial respiratory activity. \ua9 1994 Springer-Verlag

    Early ficolin-1 is a sensitive prognostic marker for functional outcome in ischemic stroke

    Get PDF
    Several lines of evidence support the involvement of the lectin pathway of complement (LP) in the pathogenesis of acute ischemic stroke. The aim of this multicenter observational study was to assess the prognostic value of different circulating LP initiators in acute stroke
    corecore