143 research outputs found

    Association of vitamin D with statin induced myalgia

    Get PDF
    Objective: To determine the association of serum 25-hydroxy vitamin D (25(OH) Vitamin D) deficiency with the occurrence of myalgia in patients on statin therapy. Methods: The pathology laboratory database was reviewed to identify patients tested for serum 25(OH) Vitamin D and creatine kinase. A retrospective chart review was then conducted to ascertain statin use and reporting of myalgia for patients tested concurrently for serum 25(OH) vitamin D and creatinekinase levels between January 1, 2013 and December 31, 2013. Results: Of the 825 patients tested for creatine kinase and 25 (OH) Vitamin D in 2013, 49 met the study criteria.The mean serum 25 (OH) Vitamin D level in the 24 statin induced myalgiapatients was 17.93 ± 12.07 compared to 18.99 ± 15.2 in the 25 no SIM group (p = 0.81). Conclusion: Our study reports no association between statin induced myalgia and low 25 (OH) vitamin D levels

    Broncho alveolar carcinoma (B.A.C.)

    Get PDF

    EFFECTIVE THERMAL CONDUCTIVITY OF FULLY-SATURATED HIGH POROSITY METAL FOAM

    Get PDF
    ABSTRACT Geometric models are used to simplify the complex, threedimensional geometry of metal foams for calculations of effective thermal conductivity. The first is based on a conventional three-dimensional cubic lattice and the second is a tetrakaidecahedronal model. The models consist of interconnecting ligaments with a spherical node at their intersections. The geometry of the foam is determined based on two dimensionless parameters: 1) the porosity and 2) the product of the specific surface area of the foam and the length of the interconnecting ligaments. A free parameter represents the size of the lumps at the ligament interconnections. It is shown that the remaining unknown geometric parameters of the models can be obtained as a solution of a cubic equation that has only one acceptable solution. From the cubic lattice model, a one-dimensional heat conduction analytical model is used to find the effective thermal conductivity of fully saturated metal foam. A three-dimensional finite element calculation of the effective thermal conductivity for the cubic lattice is then compared to the one-dimensional model. In the case of the tetrakaidecahedronal model, a similar three-dimensional finite element calculation is performed to find the effective thermal conductivity. Anisotropy of the models is explored. The results of the models are compared with experimental results from this study and the literature to substantiate their accuracy. The experimental results are reported for fully saturated aluminum metal foam in air, water, and oil. Results show that both the cubic lattice model, which is less complex, and the tetrakaidecahedronal model can both be used to represent onedimensional effective thermal conductivity. Finally, the dimensionless surface areas for each geometric model are compared. The models produce significantly different surface areas, and therefore do not both represent the density and specific surface area of foam accurately

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    Nanomaterials for subsurface application: study of particles retention in porous media

    Get PDF
    The ability to transport nanoparticles through porous media has interesting engineering applications, notably in reservoir capacity exploration and soil remediation. A series of core-flooding experiments were conducted for quantitative analysis of functionalized TiO2 nanoparticles transport through various porous media including calcite, dolomite, silica, and limestone rocks. The adsorption of surfactants on the rock surface and nanoparticle retention in pore walls were evaluated by chemical oxygen demand (COD) and UV–Vis spectroscopy. By applying TiO2 nanoparticles, 49.3 and 68.0 wt.% of surfactant adsorption reduction were observed in pore walls of dolomite and silica rock, respectively. Not surprisingly, the value of nanoparticle deposition for dolomite and silica rocks was near zero, implying that surfactant adsorption is proportional to nanoparticle deposition. On the other hand, surfactant adsorption was increased for other types of rock in presence of nanoparticles. 5.5, 13.5, and 22.4 wt.% of nanoparticle deposition was estimated for calcite, black and red limestone, respectively. By making a connection between physicochemical rock properties and nanoparticle deposition rates, we concluded that the surface roughness of rock has a significant influence on mechanical trapping and deposition of nanoparticles in pore-throats

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
    corecore