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ABSTRACT 
Geometric models are used to simplify the complex, three-

dimensional geometry of metal foams for calculations of 
effective thermal conductivity.  The first is based on a 
conventional three-dimensional cubic lattice and the second is a 
tetrakaidecahedronal model.  The models consist of 
interconnecting ligaments with a spherical node at their 
intersections.  The geometry of the foam is determined based 
on two dimensionless parameters: 1) the porosity and 2) the 
product of the specific surface area of the foam and the length 
of the interconnecting ligaments.  A free parameter represents 
the size of the lumps at the ligament interconnections.  It is 
shown that the remaining unknown geometric parameters of the 
models can be obtained as a solution of a cubic equation that 
has only one acceptable solution.  From the cubic lattice model, 
a one-dimensional heat conduction analytical model is used to 
find the effective thermal conductivity of fully saturated metal 
foam.  A three-dimensional finite element calculation of the 
effective thermal conductivity for the cubic lattice is then 
compared to the one-dimensional model.  In the case of the 
tetrakaidecahedronal model, a similar three-dimensional finite 
element calculation is performed to find the effective thermal 
conductivity.  Anisotropy of the models is explored.  The 
results of the models are compared with experimental results 
from this study and the literature to substantiate their accuracy.  
The experimental results are reported for fully saturated 
aluminum metal foam in air, water, and oil.  Results show that 
both the cubic lattice model, which is less complex, and the 
tetrakaidecahedronal model can both be used to represent one-
dimensional effective thermal conductivity.  Finally, the 
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dimensionless surface areas for each geometric model are 
compared.  The models produce significantly different surface 
areas, and therefore do not both represent the density and 
specific surface area of foam accurately.   

INTRODUCTION 
The thermal conductivity of fully saturated porous matrices 

is important in several areas of science and engineering [1].    
Several authors have reported experimental studies of effective 
thermal conductivity of general amorphous multiphase systems 
[1-3].  The evaluation of stagnant thermal conductivity of 
multi-component matrices with a periodic structure has also 
been the subject of several studies both in two and three 
dimensions [4-6].  Specifically for high porosity metal foam, 
various ideal representations of the complex, three-dimensional 
geometry have been used for calculation of effective thermal 
conductivity.   Saturated high porosity metal foam has been 
studied this way by several authors semi-analytically [7-9].  
These studies developed analytical solutions for effective 
thermal conductivity and used experimental data to determine a 
free geometric parameter.  Application for these works was 
mixed conduction and convection heat transfer applications.  
Experimental investigation of effective thermal conductivity of 
high porosity saturated metal foam has been studied as well for 
the range of common foam parameters [7, 9, 10].  The authors 
are not aware of any numerical analysis of the thermal 
conductivity or study into its anisotropy for high porosity open-
celled metal foam. 

In this study, two ideal representations of high porosity 
metal foam are investigated, a cubic and tetrakaidecahedronal 
lattice.  The geometry of the foam is determined based on the 
1 Copyright © 2004 by ASME 
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relative density and dimensionless specific surface area.  A free 
parameter, that represents the size of the lumps at the ligament 
interconnections, is used to match the model porosity and 
ligament diameter.  It is shown that the remaining unknown 
geometric parameters of the models can be obtained.   

No prior experimentally-based parameters other than the 
basic foam characterizing parameters are used to develop the 
geometric models for the foam.  From the cubic lattice model, a 
one-dimensional heat conduction analytical model is 
developed.  It is used to find the effective thermal conductivity 
of fully saturated metal foam for parameter exploration and 
verification of a three-dimensional finite element calculations. 

Experimental results are reported for fully saturated 
aluminum metal foam in air, water, and oil.  The results of the 
finite element calculations are compared with the results 
reported in the literature.  The thermal conductivity results of 
the two models are compared to data to determine the 
applicability of the models for stagnant heat conduction.  The 
resulting dimensionless surface area is also compared between 
models to evaluate their applicability to convection and multi-
dimensional heat transfer analysis. 

NOMENCLATURE 
D  spherical node diameter 
LII  length of sample in thermal conductivity experiment 
LIII  length between the 1st and 4th thermocouple of 

experimental apparatus 
P  dimensionless porous foam matrix, δSv 
PPI common designation for pores per inch (1/in.) 
R1  the resistance due to solid vertical ligament 
R2  the resistance due to the fluid 
R3  resistance due to the solid part of horizontal ligaments 
R4  resistance due to the fluid part of horizontal ligaments 
R5  resistance due to the solid part of the spherical node 
R6  resistance due to the fluid part of the spherical node 
S  surface area of ligaments in cubic lattice, m2 

Sv  specific surface area, (1/m) 
Ti  steady state temperature of the ith thermocouple 
Vm  volume of the ligaments, m3 

df  ligament diameter, m 
dp pore diameter, m 
f  parameter defined by Eq. (1) 
g  parameter defined by Eq. (1) 
h  parameter defined by Eq. (2) 
hc contact conductance in experimental setup (W/m2/K) 
keff  foam matrix effective thermal conductivity (W/m/K) 
kf  thermal conductivity of fluid, (W/m/K) 
kI   reference thermal conductivity for experiment 
ks  thermal conductivity of solid material (W/m/K) 
kwater  thermal conductivity of water, (W/m/K) 
m  parameter defined by Eq. (2) 
u  ligament diameter to length ratio 

β  node size parameter 
∆ function of β 
∆x  length of conduction path in FEA model 
Φ foam cell diameter 
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δ  length of ligament 
ε  porosity 
ϕ pore density (pores/m) 
λc  effective length of horizontal cylindrical ligaments 
λs  effective length of spherical node not included in R1 

FORMULATION OF GEOMETRIC MODELS 
Two geometric models were investigated.  The first model 

consists of a three-dimensional cubic lattice (Cubic).  In the 
second model a tetrakaidecahedronal lattice (TetraK), which is 
generally accepted as a more representative model of the foam 
[11].  Both structures are space filling, and they are shown in 
Fig. 1 and Fig. 2.   

δ

df

21 β+fd

  
Figure 1. Cubic lattice (Cubic) model and parameters 

df

δΦ
dp

21 β+fd
 

Figure 2. Tetrakaidecahedronal lattice (TetraK) model 
 

The actual structure of the foam matrix is a complex one 
with a lump of material at the ligament intersection.  In both 
models we assume that a spherical node is formed at the 
intersection.  The basic parameters representing the metal 
foams are the porosity, ε, specific surface area, Sv, ligament 
diameter, df, and the ligament length, δ, and a node size 
parameter, β.  These parameters must be chosen such that the 
model characterizes the metal foam as close as possible.  An 
additional parameter usually reported by manufacturers of the 
open-celled metal foam is the pore density, ϕ (pores per unit 
length).  This is the measure of the periodicity of the structure, 
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whereas the previous parameters describe the unit cell of 
diameter Φ. 

Using the space filling properties of the two geometric 
models, a relation between the basic parameters in terms of 
dimensionless numbers can be written as,    

0)1()()( 23 =−+− εββ gufu    (1) 
0)()(2 =+− Pmuhu ββ     (2) 

where,  

δ
δ v

f SPand
d

u ==    (3) 

and f(β), g(β), h(β), and m(β) are functions of node parameter 
β.  β is defined in terms of the diameter of the spherical node, 
D, and ligament diameter, df by, 

1)/( 2 −= fdDβ     (4)  

Depending on the model, a constraint on the node 
parameter must be enforced to assure that the exposed surface 
area at the node is positive and the node volume is larger than 
the volume of the connecting ligaments at the node.  Table 1 
and Table 2 present the functions f, g, h and m as a function of 
β, where the functions X and Y are given respectively by, 

])1(3)[1(4)1(8 2225.12 βββββ −++−+−+=X  (5) 

])1(3)[1( 222 ββββ −++−+=Y   (6) 

Table 1. Functions f(β), g(β), h(β), and m(β) used in 
Eq. (1) and Eq. (2) for the Cubic model 

f(β) ]6/)1)(9/2(/[1 5.12 Y++− ββ  

g(β) ]8/)1)(6/1(4/3[/1 5.12 Y++− ββπ  

h(β) ]3/)1(21/[1 22 ββββ +++−  

m(β) )]1(2133[/1 22 ββββπ +++−  

 
Table 2. Functions f(β), g(β), h(β), and m(β) used in 

Eq. (1) and Eq. (2) for the TetraK model 
f(β) )24//(1 X−β  

g(β) )]8/3(/[28 X−βπ  

h(β) ]12)1/[(2 22 βββ +−+  

m(β) ]12)1[(3/24 22 βββπ +−+  

The solution of Eq. (1) has one acceptable root for a given 
parameter set.  When the value ∆, given by 

∆ = [ ]27/)(4/)1)(()( 3βεββ fgg −−   (7) 
is less than zero, there are three real roots of Eq. (1) where only 
one is physically acceptable.  In general, this root can be 
written as, 
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For the case of the tetrakaidecahedronal lattice and the 
practical range of β when f(β) > 0 (β < 1.304), then θ = 4π/3 
and when f(β) < 0 (β > 1.304), then θ = 2π/3.  It should be 
pointed out that for the case of ∆ > 0 the only one acceptable 
root of Eq. (1) is not in most cases in the practical range of 
application and it is not given here. 

Once u is obtained by assuming a value for β, Eq. (2) gives 
the dimensionless surface parameter, P.  In order to obtain 
quantitative values for df and Sv, the ligament length must be 
known.  The ligament length, δ, is simply a scaling of the unit 
cell size, which relates to the pore density.  For the cubic lattice 
this relation is simply δ = 1/ϕ and for the tetrakaidecahedronal 
unit cell, δ = 0.658/ϕ.  With these relations and Eq. (3), the 
geometry of the foam can be completely defined.   

It should be pointed out that there are experimental 
evidences that the cross-section of the ligaments connecting the 
nodes are, in general, a function of porosity and change from 
circular for ε = 0.85 to an inner concave triangle at ε = 0.97 [7].  
In this work, the functions f(β), g(β), h(β), and m(β) are only 
functions of the node parameter and porosity, and this cross-
section variation with porosity is neglected.  

EFFECTIVE THERMAL CONDUCTIVITY  
Using the geometric models determined for the two lattice 

structures, the effective thermal conductivity can now be 
determined.  A one-dimensional analytical solution is first 
derived for the cubic model.  The effective thermal 
conductivity results from this model are compared to a 
numerical solution for this problem to verify the numerical 
method.  The effective thermal conductivity is then determined 
numerically for the tetrakaidecahedronal model.  Finally, 
experimental results for thermal conductivity are obtained and 
compared to the numerical results for both. 

Cubic One-Dimensional Analytical Solution 
Using the geometry for the cubic model given in Fig. 1, the 

total thermal resistance for the saturated unit lattice composed 
of two phases (solid and fluid) can be calculated.  The thermal 
resistance, assuming one dimensional heat transfer, is the 
combination of four parallel thermal resistances.  One is a 
thermal resistance due to the solid vertical ligament.  The 
second thermal resistance is through the fluid parallel to the 
solid ligament.  The third thermal resistance is a combination of 
three resistances in series: first through fluid, then through the 
four horizontal ligaments and through the fluid again.  The 
fourth thermal resistance is through the fluid, then through the 
surrounding node at the ligaments’ cross-section and through 
the fluid again.   

The effective thermal conductivity ratio for the fully 
saturated foam matrix can be written as, 
3 Copyright © 2004 by ASME 
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where R1 is the non-dimensional resistance due to the solid 
vertical ligament, R2 is the resistance due to the fluid, R3 and R4 
are the series resistances due to the solid and fluid for the 
horizontal ligament sections, and R5 and R6 are the series 
resistances for the solid and fluid through the node minus the 
vertical ligament.  Figure 3 is a schematic showing the regions 
for the one-dimensional calculation.  

δ

df

21 β+fd

λc

λs

3,4

5,6

1 2

 
Figure 3. Schematic showing regions used in 
derivation of the Cubic 1-D analytical solution 

To evaluate the resistances, the average heat conduction 
path through the horizontal cylindrical ligaments, region 3 and 
4, and spherical node, region 5 and 6, were derived first, 

fc d
2
πλ =      (10) 
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where λc is the average heat conduction path through the 
horizontal cylindrical ligaments, and λs is for the average heat 
conduction path of the spherical node. It should be pointed out 
that the equivalent spherical node excludes the solid vertical 
ligament passing through the node.   

These dimensionless thermal resistances are given for the 
Cubic 1-D model by, 
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Therefore, the effective thermal conductivity ratio of the 
combined matrix is given by Eq. (9) and can be written as a 
function of ks/kf, u, and β.   

Numerical Effective Thermal Conductivity Models 
The first step in investigating effective thermal 

conductivity of the two structures numerically was 
development of the FEA models.  Unigraphics solid modeling 
software [12] was used to create solid geometry that was then 
exported to COSMOS/M and DesignSTAR [13] for analysis.  
The unit cell side lengths were fixed.  Temperature boundary 
conditions were applied at xi and xi + ∆xi, where i is the 
direction of heat flux.  Spatial convergence testing was 
performed over a large range of ks/kf for ε = 0.85 to determine 
the mesh refinement necessary on the boundary and the 
solid/fluid interfaces.  There was less than 4% variation 
between what was considered a coarse mesh and the final mesh 
used.  The mesh sizing used on each boundary and the 
solid/fluid interface was the same.  Figure 4 shows the final 
model used for the Cubic FEA model.   

 
Figure 4. Final Cubic FEA model (ε = 0.95, β = 1) 
4 Copyright © 2004 by ASME 
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For a given set of geometric parameters (ε, β, ks/kf), the 
average nodal heat flux is calculated, and the effective thermal 
conductivity was calculated using the following equation, 

T
xq

k ii
ieff ∆

∆
=, , i = x,y, z,    (18) 

The model for the TetraK FEA model was developed 
similarly (Fig. 5).  The model consists of 1/16 of a 
tetrakaidecahedron, presented by Boomsma and Poulikakos [8]. 

In order to quantitatively compare the models to each other 
some assumptions have to be made regarding their equivalency.  
When considering the geometric parameters, in additional to 
constant density between models, three scenarios were 
considered: constant df, constant dp, and constant pore area, Ap.  
These three scenarios produce different geometry if the 
ligament length, δ, is allowed to change.  However, if the 
geometric parameters are normalized by δ then the three 
scenarios result in the same geometry comparison.  That is, 
following calculation of parameters using Eqs. (1-8) and 
normalization with the resulting ligament length, the three 
scenarios result in the same FEA models.   

Both the TetraK and Cubic FEA models were explored for 
anisotropy of the thermal conductivity.  An additional cubic 
lattice model was required to simulate this with the axis of the 
ligaments rotated about the three axes by 45°, shown in full in 
Fig. 6 and just the ligaments in Fig. 7.   

 
Figure 5. Tetrakaidecahedronal (TetraK) FEA model  

(ε = 0.95, β = 1) 
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Figure 6. Cubic Rotated FEA model (ε = 0.95, β = 1) 

 
Figure 7. Cubic Rotated FEA solid only portion 

showing orientation of ligaments  (ε = 0.95, β = 1) 

Experimental Investigation 
Through the use of the experimental apparatus shown in 

Fig. 8, the experimental thermal conductivity of the porous 
foam matrix was determined.  The apparatus consists of a 
heating element that uses 6-volts to introduce a steady source of 
heat to the sample.  Heat is conducted through the test section 
(with a one-dimensional heat transfer assumption) towards a 
copper heat sink cooled with flowing water.  This relies on the 
temperature gradient through a 9.53 mm diameter 304 stainless 
steel meter bar to determine the heat flux.  Type T 
thermocouples are located in the center of the meter bar, with 
T4 and T5 located 0.25 mm from the contact face. 

In order to measure the thermal conductivity of the porous 
foam matrix within a fluid medium, a modification was made to 
the apparatus used by Kim [14].  A capsule was made to 
contain a sample of the porous foam matrix as well as a fluid.  
5 Copyright © 2004 by ASME 
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The capsule was an acrylic cylinder with a steel top and 
bottom.  The bottom was sealed tight, leaving the top of the 
capsule open to place the sample and the fluid in.  After placing 
the steel top under a 50-psia pressure exerted by the micrometer 
allowing for an adequate seal.  The space outside of the capsule 
was subsequently evacuated.  

The various fluids used in these experiments were air (12 
psia), water, and oil. The metal foam used in the experiment 
was 6101 aluminum Duocell foam [15] with a pore density of 
20 PPI and a porosity of 0.95.  The foam and fluid parameters 
are summarized in Table 3. 

 
Figure 8.  Schematic of experimental apparatus [14] 

Table 3. Experimental fluid and foam parameters 
k Aluminum (W/m/K) 218 
Foam porosity 0.95 
Foam pore density (pores/in.) 20 
k Air (W/m/K) 0.0269 
k Oil (W/m/K) 0.1450 
k Water (W/m/K) 0.6248 

The experiment was run until steady state temperatures 
were attained, which was approximately two hours.  The 
various thermocouples placed on the apparatus allow for the 
determination of the effective thermal conductivity of the 
sample through the use of Eq. (19).   
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Equation (19) neglects conduction through the acrylic 
material and any temperature drop through the steel ends of the 
sample holder.  The general uncertainty analysis of the 
experiment yielded an uncertainty in the experimental keff of 
approximately 20% for air, which was the worst case.  The 
dominating term in the uncertainty equation was the contact 
resistance term between the sample and the steel plate. 
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RESULTS AND DISCUSSION 

Cubic 1-D to Cubic FEA Comparison 
The Cubic 1-D analytical results from Eq. (9) for keff/kf 

were compared to the numerical results for the Cubic FEA 
model.  Figure 9 shows the ratio of the Cubic 1-D to Cubic 
FEA ks/kf.  The variation between the one-dimensional 
analytical model and the FEA model increases up to about 23% 
for large ks/kf.  This was higher than expected and does not 
trend as expected with porosity.  Given the results of the spatial 
convergence tests it is believed that these are physical 
difference between the models, however further investigation 
into this is warranted. 
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Figure 9.  Ratio of Cubic 1-D to Cubic FEA results for 

keff/kf for varying porosity 

Effective Thermal Conductivity Anisotropy 
The effective thermal conductivity of the Cubic FEA and 

Cubic Rotated FEA models were compared next.  Their ratio is 
plotted in Figure 10.  The ratio between the TetraK FEA z and 
x directions are plotted in Fig. 11 for the porosity extremes.  
The variation between the rotated and non-rotated Cubic and 
the directional TetraK was largest for the smallest porosity, 
which was expected.  The maximum variations were 
approximately 25% and 5% respectively.  

Cubic FEA and TetraK FEA Model Comparison 
The effective thermal conductivity of fluid-saturated metal 

foam keff/kf, for the cubic and tetrakaidecahedron models are 
compared versus ks/kf in Fig. 12 for β = 1 and the extremes of 
the density range considered.  The ratio of the results compare 
well for low ks/kf and are a maximum of about 11% for the 
highest density.  The average thermal conductivity was 
determined by weighting the respective directional values using 
Eqs. (20) and (21).   
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Figure 10. Ratio of Cubic FEA to Cubic Rotated FEA 

keff/kf for porosity range extremes 
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Figure 11. Ratio of TetraK-z to TetraK-x keff/kf for 

porosity range extremes 
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Figure 12. Ratio of average Cubic to average TetraK 

keff/kf for porosity range extremes  
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Table 4. Normalized keff results and variation to 
results from the present experiment 

Fluid 
Experi- 
mental 
keff/kf 

Cubic 
FEA 

keff/kf 

TetraK 
FEA 

keff/kf 

BCM 
[7] 

keff/kf 

Cubic 
Var. 

TetraK 
Var. 

BCM 
Var. 

Air 131.4 164.9 169.5 148.8 20% 22% 12% 
Oil 27.4 31.5 32.2  13% 15%  

Water 7.8 8.0 8.3 7.9 3% 6% 2% 

 Experimental Data and FEA Model Comparison 
The average thermal conductivity of each fluid was 

determined based on the average fluid temperature during an 
experiment (34.8°C).  Figure 13 compares the experimental 
data to the two model calculations and Fig. 14 is the variation 
between the experimental data and the FEA models.  Data from 
Calmidi and Mahajan [9] was shown also in Fig. 13. Table 4 is 
a summary of the results.   

Both the average Cubic FEA and TetraK FEA model 
results compare well with the experiment for low ks/kf and the 
data from Calmidi and Mahajan [9].  The variation of each 
model is approximately the same and increases with ks/kf.  
Based on the uncertainly analysis performed, it’s believed that 
a significant portion of the error in the experiment is due to the 
contact resistance between the sample and the apparatus, which 
is exasperated at the higher ks/kf ratio.  

To address the large uncertainty in the experimental data, 
the experiment is being redesigned to minimize the contact 
resistance effects.  Additionally, the direction of the heat flow 
vector will be inverted to minimize natural convection within 
the sample fluid. 

It is interesting to note that, the models used in this study 
show that the effective thermal conductivity ratio only depends 
on the dimensionless ligament diameter to ligament length 
ratio, u.  This parameter is only a function of porosity of the 
porous foam matrix.  This is consistent with results from 
Calmidi and Mahajan [9].  

The results indicate that the cubic and the 
tetrakaidecahedronal lattice models perform the same for 
determining the effective thermal conductivity of stagnant 
saturated metal foam.  Figure 15 is a plot of the keff/kf versus 
ks/kf using the TetraK FEA model for use with future 
applications.  Shown also in Fig. 15 is a simple power function 
of the form: 

( ) s
f

eff kC
k
k

ε−= 1    (22) 

where C = 0.44.  This represents the foam-only contribution to 
the effective thermal conductivity.  This shows that for ks/kf 
less than 1000-2000 the fluid contribution must be considered 
also. 
7 Copyright © 2004 by ASME 

se: http://www.asme.org/about-asme/terms-of-use



Dow
1

10

100

1000

100 1000 10000
ks/kf

ke
ff/

kf

present experiment

Cubic FEA

TetraK FEA

BCM experiment [7]

 
Figure 13.  Experimental data compared to FEA 
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Figure 14. Variation between model and experimental 

data as a function of ks/kf 
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Figure 15. TetraK model predictions for keff/kf for 

different metal foam densities 

Model Surface Area Comparisons 
With u determined for the two models from Eq. (8), the 

resulting dimensionless surface area was calculated using Eq. 
(2).  These are shown in Table 5 for P and the ratio of the two 
model calculations.  Figure 16 shows the values versus 
porosity.  The results show that there is significant difference 
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between the models for the dimensionless specific surface area 
prediction, a factor of 1.7 to 2.0.  Therefore, use of the both 
models may not be appropriate for convection heat transfer 
applications, since the interfacial area will govern this mode of 
heat transfer.  To quantitatively evaluate the two models,  
actual surface area data is required as a function of the foam 
porosity and pore density, which does not exist experimentally.  
Another factor that will affect the actual surface area is the 
shape of the ligament cross-section, which has been shown to 
vary with density [7].  The value of β does not significantly 
affect P for the Cubic model, however, it is more significant for 
the TetraK model.  This is attributed to the two additional 
ligaments that the Cubic model has for each node, reducing the 
portion of the surface area that is in the node.   
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Figure 16. P for the two models at β=1 and β=1.5 
 

Table 5. Dimensionless parameters u and P from Eqs. 
1-8 compared for different β and porosity 

β ε u,c / u,t P,c / P,t 
1 0.85 0.61 1.70 
1 0.89 0.61 1.70 
1 0.93 0.60 1.69 
1 0.95 0.60 1.69 
1 0.97 0.60 1.69 

1.5 0.85 0.66 2.01 
1.5 0.89 0.65 1.96 
1.5 0.93 0.64 1.90 
1.5 0.95 0.63 1.86 
1.5 0.97 0.62 1.82 

CONCLUSIONS 
A cubic and tetrakaidecahedronal three-dimensional model 

were used to replace the complex structure of high porosity 
metal foam to evaluate effective thermal conductivity with the 
finite element method.  The porosity and specific surface area 
of the foam were determined in terms of dimensionless 
parameters convenient for parametric studies of both models.  
FEA of the cubic model was compared to a one-dimensional 
analytic solution, which indicated some difference, however 
provides a less complex model.  The experimental 
measurements of effective thermal conductivity were obtained 
with good agreement with other data in the literature and with 
the results of the two FEA models for low ks/kf.  The error 
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increased up to 20% for the large ks/kf data point.  Contact 
conductance is attributed with the majority of the error, and the 
experimental apparatus is being redesigned.  Both models 
varied similarly from experimental data indicating that either 
geometric model is valid for representing conduction heat 
transfer only.  The finite element modeling demonstrated the 
capability for calculating effective thermal conductivity of 
complex geometries or expanded unit cells.  The resulting 
dimensionless specific areas were compared for each model for 
constant density, and they produce significantly different 
dimensionless surface areas.  Therefore both will not represent 
mixed heat transfer accurately.  More investigation into affect 
of the node parameter and ligament cross-sectional shape on 
surface area is required, and ultimately experimental work on 
surface area is required to determine which model is more 
appropriate in this regard. 
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