1,713 research outputs found
Surface Impedance Determination via Numerical Resolution of the Inverse Helmholtz Problem
Assigning boundary conditions, such as acoustic impedance, to the frequency
domain thermoviscous wave equations (TWE), derived from the linearized
Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which
yields a discrete set of complex eigenfunctions and eigenvalue pairs. The
proposed method -- the inverse Helmholtz solver (iHS) -- reverses such
procedure by returning the value of acoustic impedance at one or more unknown
impedance boundaries (IBs) of a given domain, via spatial integration of the
TWE for a given real-valued frequency with assigned conditions on other
boundaries. The iHS procedure is applied to a second-order spatial
discretization of the TWEs on an unstructured staggered grid arrangement. Only
the momentum equation is extended to the center of each IB face where pressure
and velocity components are co-located and treated as unknowns. The iHS is
finally closed via assignment of the surface gradient of pressure phase over
the IBs, corresponding to assigning the shape of the acoustic waveform at the
IB. The iHS procedure can be carried out independently for different
frequencies, making it embarrassingly parallel, and able to return the complete
broadband complex impedance distribution at the IBs in any desired frequency
range to arbitrary numerical precision. The iHS approach is first validated
against Rott's theory for viscous rectangular and circular ducts. The impedance
of a toy porous cavity with a complex geometry is then reconstructed and
validated with companion fully compressible unstructured Navier-Stokes
simulations resolving the cavity geometry. Verification against one-dimensional
impedance test tube calculations based on time-domain impedance boundary
conditions (TDIBC) is also carried out. Finally, results from a preliminary
analysis of a thermoacoustically unstable cavity are presented.Comment: As submitted to AIAA Aviation 201
Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter
A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання термінальної задачі управління та синтезований параметризований закон управління в аналітичному вигляді, який залежить від змінного параметра глибини прогнозу. Досліджено особливості впливу величини параметра управління на точність досягнення кінцевої точки, дані рекомендації з вибору параметра для нівелювання помилки інерційних вимірювань. Синтез управління здійснюється методом переслідування ведучої точки за інформацією, отриманою інтегруванням вимірювань фактичного прискорення і містить помилку, характерну для акселерометрів
Electromagnetically induced switching of ferroelectric thin films
We analyze the interaction of an electromagnetic spike (one cycle) with a
thin layer of ferroelectric medium with two equilibrium states. The model is
the set of Maxwell equations coupled to the undamped Landau-Khalatnikov
equation, where we do not assume slowly varying envelopes. From linear
scattering theory, we show that low amplitude pulses can be completely
reflected by the medium. Large amplitude pulses can switch the ferroelectric.
Using numerical simulations and analysis, we study this switching for long and
short pulses, estimate the switching times and provide useful information for
experiments
Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles
We give two formulations of exclusion statistics (ES) using a variable number
of bosonic or fermionic single-particle states which depend on the number of
particles in the system. Associated bosonic and fermionic ES parameters are
introduced and are discussed for FQHE quasiparticles, anyons in the lowest
Landau level and for the Calogero-Sutherland model. In the latter case, only
one family of solutions is emphasized to be sufficient to recover ES;
appropriate families are specified for a number of formulations of the
Calogero-Sutherland model. We extend the picture of variable number of
single-particle states to generalized ideal gases with statistical interaction
between particles of different momenta. Integral equations are derived which
determine the momentum distribution for single-particle states and distribution
of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE
Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models
We report about two new rigorous results on the non-analytic properties of
thermodynamic potentials at first order phase transition. The first one is
valid for lattice models () with arbitrary finite state space, and
finite-range interactions which have two ground states. Under the only
assumption that the Peierls Condition is satisfied for the ground states and
that the temperature is sufficiently low, we prove that the pressure has no
analytic continuation at the first order phase transition point. The second
result concerns Ising spins with Kac potentials
, where is a small scaling
parameter, and a fixed finite range potential. In this framework, we
relate the non-analytic behaviour of the pressure at the transition point to
the range of interaction, which equals . Our analysis exhibits a
crossover between the non-analytic behaviour of finite range models
() and analyticity in the mean field limit (). In
general, the basic mechanism responsible for the appearance of a singularity
blocking the analytic continuation is that arbitrarily large droplets of the
other phase become stable at the transition point.Comment: 4 pages, 2 figure
On the isospin dependence of the mean spin-orbit field in nuclei
By the use of the latest experimental data on the spectra of Sb and
Sn and on the analysis of properties of other odd nuclei adjacent to
doubly magic closed shells the isospin dependence of a mean spin-orbit
potential is defined. Such a dependence received the explanation in the
framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure
Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid
The Landau paradigm of classifying phases by broken symmetries was
demonstrated to be incomplete when it was realized that different quantum Hall
states could only be distinguished by more subtle, topological properties.
Today, the role of topology as an underlying description of order has branched
out to include topological band insulators, and certain featureless gapped Mott
insulators with a topological degeneracy in the groundstate wavefunction.
Despite intense focus, very few candidates for these topologically ordered
"spin liquids" exist. The main difficulty in finding systems that harbour spin
liquid states is the very fact that they violate the Landau paradigm, making
conventional order parameters non-existent. Here, we uncover a spin liquid
phase in a Bose-Hubbard model on the kagome lattice, and measure its
topological order directly via the topological entanglement entropy. This is
the first smoking-gun demonstration of a non-trivial spin liquid, identified
through its entanglement entropy as a gapped groundstate with emergent Z2 gauge
symmetry.Comment: 4+ pages, 3 figure
Exclusion Statistics in a trapped two-dimensional Bose gas
We study the statistical mechanics of a two-dimensional gas with a repulsive
delta function interaction, using a mean field approximation. By a direct
counting of states we establish that this model obeys exclusion statistics and
is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte
Exact solution of Calogero model with competing long-range interactions
An integrable extension of the Calogero model is proposed to study the
competing effect of momentum dependent long-range interaction over the original
{1 \ov r^2} interaction. The eigenvalue problem is exactly solved and the
consequences on the generalized exclusion statistics, which appears to differ
from the exchange statistics, are analyzed. Family of dual models with
different coupling constants is shown to exist with same exclusion statistics.Comment: Revtex, 6 pages, 1 figure, hermitian variant of the model included,
final version to appear in Phys. Rev.
Classical phase space and statistical mechanics of identical particles
Starting from the quantum theory of identical particles, we show how to
define a classical mechanics that retains information about the quantum
statistics. We consider two examples of relevance for the quantum Hall effect:
identical particles in the lowest Landau level, and vortices in the
Chern-Simons Ginzburg-Landau model. In both cases the resulting {\em classical}
statistical mechanics is shown to be a nontrivial classical limit of Haldane's
exclusion statistics.Comment: 40 pages, Late
- …